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Abstract Small repeating earthquakes are thought to represent rupture of isolated asperities loaded
by surrounding creep. The observed scaling between recurrence interval and seismic moment, Tr ∼ M1∕6,
contrasts with expectation assuming constant stress drop and no aseismic slip (Tr ∼ M1∕3). Here we
demonstrate that simple crack models of velocity-weakening asperities in a velocity-strengthening fault
predict the M1∕6 scaling; however, the mechanism depends on asperity radius, R. For small asperities (R∞ <

R < 2R∞, where R∞ is the nucleation radius) numerical simulations with rate-state friction show interseismic
creep penetrating inward from the edge, and earthquakes nucleate in the center and rupture the entire
asperity. Creep penetration accounts for ∼25% of the slip budget, the nucleation phase takes up a larger
fraction of slip. Stress drop increases with increasing R; the lack of self-similarity being due to the finite
nucleation dimension. For 2R∞ < R ≲ 6R∞simulations exhibit simple cycles with ruptures nucleating from
the edge. Asperities with R ≳ 6R∞ exhibit complex cycles of partial and full ruptures. Here Tr is explained
by an energy criterion: full rupture requires that the energy release rate everywhere on the asperity at least
equals the fracture energy, leading to the scaling Tr ∼ M1∕6. Remarkably, in spite of the variability in behavior
with source dimension, the scaling of Tr with stress drop Δ𝜏 , nucleation length and creep rate vpl is the same
across all regimes: Tr ∼

√
R∞Δ𝜏5∕6M1∕6

0 ∕vpl. This supports the use of repeating earthquakes as creepmeters
and provides a physical interpretation for the scaling observed in nature.

Plain Language Summary While most earthquake sequences have complex temporal patterns,
some small earthquakes are quite predictable: they repeat periodically. The time between consecutive
events (recurrence interval) grows with earthquake size: as intuitive, it takes longer to accumulate the
mechanical energy for large earthquakes. However, the scaling between the recurrence interval and
earthquake energy (seismic moment) is not what simple physical considerations predict. It is often assumed
that faults are locked between events and seismic slip must therefore keep up with long-term plate motion.
This leads to the scaling: Tr ∼ M1∕3

0 , but the observed scaling is Tr ∼ M1∕6
0 . In fact, faults are not fully locked

between earthquakes: they can slip slowly, or release part of the energy in smaller quakes between the
larger ones. Here we use numerical simulations, and ideas from fracture mechanics, to understand what
controls the time between repeating quakes. The main results are (1) analytical expressions of the
recurrence interval as a function of earthquake size, predicting the observed scaling; (2) explanation of the
differences between the cycle of small and large earthquakes (fraction of slow slip, direction of rupture
propagation, and the occurrence of smaller quakes between large ones) and the quantities determining
these transitions.

1. Introduction

Unlike large earthquakes, small quakes can be very predictable; periodic sequences of events with very similar
waveforms have been detected in multiple locations worldwide. They are typically understood as the rup-
ture of locked patches surrounded by aseismic creep, loading them at a usually constant rate. An interesting
observation is the scaling between their recurrence interval and seismic moment. Nadeau and Johnson (1998)
observed that the recurrence interval Tr and seismic moment M0 scale as T ∼ M1∕6

0 for small repeaters on the
San Andreas fault, and subsequent studies confirmed this scaling in other areas (Chen et al., 2007). As outlined
by Nadeau and Johnson (1998), standard scaling arguments predict that Tr ∼ M1∕3

0 . Assuming constant stress
drop constrains seismic slip to be linear with rupture dimension (S ∼ R); further assuming that the coseismic
slip is equal to the slip deficit accumulated since the previous event (S = vplTr , where vpl is fault slip rate) results
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in a linear scaling between recurrence interval Tr and R. Since M0 ∼ Δ𝜎R3 a constant stress drop Δ𝜎 implies
Tr ∼ M1∕3

0 . Nadeau and Johnson (1998) explained the observed scaling by abandoning the constant stress
drop assumption, inferring Δ𝜎 ∼ M−1∕4

0 . To fit observations, very high stress drops (of the order of 103 –104

MPa) are required for the smallest events. Alternatively, the scaling can be explained by assuming constant
Δ𝜎 but relaxing the assumption that S = vplTr , that is, by not assuming that the fault is entirely locked inter-
seismically so that the coseismic slip is less than vplTr . This was suggested by Beeler et al. (2001), who adopted
a strain-hardening rheology on a circular patch experiencing spatially uniform interseismic creep. According
to their model, smaller asperities release a large fraction of slip aseismically, which can result in the observed
scaling. Similar conclusions were reached by Chen and Lapusta (2009), who presented numerical simulations
of seismic cycles on circular, velocity-weakening asperities surrounded by a velocity-strengthening exterior.
They found that smaller asperities experience a larger fraction of aseismic slip, as suggested by Beeler et al.
(2001). Alternatively, Sammis and Rice (2001) proposed a geometrical explanation: asperities at the transition
between locked and creeping regions experience a stress field decaying with distance from the transition,
which under certain assumptions results in Tr ∼ M1∕6

0 . Because of the particular geometry, this may be less
generally applicable than the aseismic slip interpretation.

Here we seek a deeper understanding of the factors that control the recurrence interval of earthquakes on
circular asperities using fracture mechanics concepts, guided by numerical simulations of faults obeying
rate-state friction. Chen and Lapusta (2009) demonstrated that numerical simulations of velocity-weakening
asperities embedded in a velocity-strengthening fault reproduce the Tr ∼ M1∕6

0 scaling. They attributed this
observation to the occurrence of creep, which is significant on asperities with a dimension close to the nucle-
ation size. Here we start from a similar set of numerical simulations and derive analytical expressions for the
recurrence interval. Our goal is twofold: first, by formulating the problem in terms of physical quantities such
as stress drop and nucleation length, we develop a model which can be applied to a different choice or param-
eters or even a potentially different frictional behavior. Second, we explore the behavior of asperities much
larger than the nucleation dimension, which do not experience significant aseismic slip. In this regime, we
provide a different physical explanation for the observed scaling. The seismic moment of a circular crack of
radius R with uniform stress drop Δ𝜎 is (Eshelby, 1957)

M0 = 16
7
Δ𝜎R3 (1)

For constant stress drop, the scaling Tr ∼ M1∕6
0 implies that Tr ∼ R1∕2. Interestingly, this is analogous to the

scaling derived by Werner and Rubin (2013) for antiplane faults, by considering the balance between the
energy release rate for a crack loaded by downdip creep and the fracture energy absorbed to propagate the
crack through the full velocity-weakening region, and confirmed by Kato (2012a) for subduction zones. Here
we demonstrate that, under certain assumptions, this energy argument applied to circular asperities leads to
the same scaling for circular cracks. However, numerical simulations only exhibit this scaling above a critical
radius (twice the nucleation radius R∞, defined below), and stress drop is not constant for asperities smaller
than this dimension. We develop crack models to answer the following questions: (1) How long does it take
for creep loading to nucleate a dynamic rupture? (2) Once an event nucleates, under what conditions will it
rupture the entire asperity? (3) How does stress drop vary with asperity dimension? We find that the answers
to these questions depend on the asperity dimension R relative to R∞. This is perhaps not surprising, since
this dimension controls the transition between aseismic and seismic slip; the occurrence of creep affects the
strength of the asperity and hence rupture propagation. Furthermore, as R decreases toward R∞, the assump-
tions behind classical seismological models of circular ruptures break down: the rupture cannot be assumed
to start at a point expanding subsequently at seismic rupture velocities. In this limit, the rupture is not self
similar and the stress drop increases slightly with R. Combining these results, we obtain analytical estimates
for the recurrence interval as a function of asperity radius R, which predict a scaling close to that observed
in nature. In summary, we show that Tr scales approximately with M1∕6

0 over a range of asperity radii, and
potentially also for R ≫ R∞; however, the underlying physics differs depending on asperity size.

2. Numerical Simulations

In order to test the analytical results derived in the next section, we ran a set of simulations analogous
to those presented by Chen and Lapusta (2009): a circular velocity-weakening asperity on an otherwise
velocity-strengthening planar fault. Here we use the quasi-dynamic rupture code FDRA (Mavrommatis et al.,
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Figure 1. (top) Full rupture on an asperity of size R = 16Lb (1.3R∞). Color is slip speed; slip is in the x direction. The time since the arrival of the creep front at
r = 0 is indicated; notice the acceleration in panels (1) and (2) preceding the main event. (bottom left) Maximum slip velocity in the VW region versus time,
showing that this fault experiences periodic seismic ruptures. Numbers refer to the snapshots above. (bottom right) Slip history over two cycles. Red lines
indicate the seismic phase (v > vdyn); blue and orange lines indicate slip between the arrival of the creep front and the onset of the seismic phase; black lines
indicate interseismic slip.

2017; Segall & Bradley, 2012). The agreement between our simulation results and the fully dynamic models
used by Chen and Lapusta (2009) and the success of our quasi-static derivations in reproducing the observed
scaling indicate that dynamic effects are not essential in determining the recurrence interval scaling.

The frictional resistance on the fault 𝜏f is controlled by rate-state friction (Dieterich, 1978):

𝜏f (v, 𝜃) = 𝜎

[
f0 + a log

v
v0

+ b log
𝜃v0

dc

]
, (2)

where 𝜎 is the effective normal stress; a and b are constitutive parameters; dc is the rate-state slip-weakening
distance (a characteristic sliding length over which state 𝜃 evolves). The parameters v and v0 are the slip veloc-
ity and reference slip velocity; f0 is the steady state friction coefficient at v = v0, and 𝜃 is a state variable which
here evolves according to the aging law (Ruina, 1983):

d𝜃
dt

= 1 − 𝜃v
dc

, (3)

so that the steady state strength at constant slip velocity v is given by

𝜏ss(v) = 𝜎

[
f0 + (a − b) log

v
v0

]
. (4)
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Figure 2. Example of a seismic cycle on an asperity with R = 38Lb (3R∞). Color is slip speed. (top) Seismic event (panels 1–4) and afterslip (panel 5). Inward
propagation of a creep front, and a slip acceleration that does not reach seismic velocity (panel 8). The time from the onset of the earthquake is indicated.
(bottom) Maximum slip velocity in the VW region versus time, showing seismic and aseismic slip episodes. Numbers refer to the panels above.

Chen (2012) ran simulations with another commonly used state evolution law (the slip law) and showed that
the scaling between recurrence interval and moment (Tr ∼ M1∕6

0 ) is unchanged.

Slip on the fault is controlled by the following equation of motion:

𝜏el(x) − 𝜏f (x) =
𝜇

2cs
v(x), (5)

where 𝜇 is the shear modulus and 𝜏el is the elastostatic shear stress due to loading from the boundary and
quasi-static elastic interactions between fault elements computed through a Boundary Element Method
approach. The right-hand side represents radiation damping, which accounts for the stress change due to
radiation of plane S waves (Rice, 1993), with cs as the shear wave speed.

Rate-state friction combined with elasticity leads to characteristic dimensions which control earthquake
nucleation, and the transition between seismic and aseismic behavior. One such dimension is

Lb =
𝜇′dc

𝜎b
. (6)

where 𝜇′ = 𝜇 for antiplane shear and 𝜇∕(1 − 𝜈), with 𝜈 = Poisson’s ratio, for plane strain deformation. This
length scale was first identified by Dieterich (1992) as the minimum nucleation length, although subsequent
studies obtained different estimates (Rubin & Ampuero, 2005, and references therein). For nominal calcula-
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Figure 3. Scaling of Tr with seismic moment from numerical simulations. The y axis is the time since the last rupture; we
define Tr as the time between consecutive full ruptures. Error bars indicate range of observed Tr ; the large variation for
the fifth data point is due to alternation of central and lateral ruptures.

tions we set 𝜇 = 30 GPa, 𝜈 = 0.25, dc = 0.1 mm, b = 0.02 and a − b = ±0.005 for the velocity-strengthening
and velocity-weakening region respectively, resulting in Lb = 4m), but later vary a∕b. We tested asperity radii
R such that R∕Lb is between 6 and 100. The system is driven by imposed velocity v = vpl (10−9 m/s) outside
the domain, which has a size of 6R in each direction. As long as the domain boundaries are sufficiently far,
the domain size has little influence of the simulation results: we tested sizes between 6R and 100R and found
a variation of less than 1% in recurrence interval. We define earthquakes as the period during which the slip
velocity at any point exceeds the threshold velocity vdyn = 2a𝜎cs∕𝜇′ (here 0.14 m/s) at which point the inertial
term in equation 5 becomes significant (Rubin & Ampuero, 2005).

The rupture behavior as a function or R is described in detail in Chen and Lapusta (2009); here we summarize
the main results. The smallest faults (R ≤ 12.5Lb) are entirely aseismic. However, they also exhibit cycles:
most slip takes place during short episodes of slip at a rate higher than loading rate (e.g., v ∼ 103vpl for the
smallest fault, R = 6Lb), and are nearly locked between such events. Intermediate size asperities (15.7Lb ≤
R ≤ 20.5Lb) exhibit cycles of seismic ruptures nucleating at the center of the asperity (Figure 1). After each
rupture, a creep front propagates inward from the edge and the next rupture occurs when the front reaches
the center. For larger asperities (R ≥ 25Lb) ruptures nucleate from the side, when the creep front has only
partially penetrated the asperity. There are always one or more transient aseismic slip events in each cycle
before reaching seismic velocities (Figure 2). For R ≃ 22Lb, central and lateral ruptures alternate. Finally, we
note that on the largest asperity tested (R = 100Lb) some seismic ruptures arrest before covering the entire
asperity; we denote these as partial ruptures. In section 3.4, we further explore the partial ruptures regime by
choosing rate-state parameters such that similar behavior can be reproduced with lower computational costs.
As expected, our simulations result in the Tr ∼ M1∕6

0 scaling observed by Chen and Lapusta (2009; Figure 3),
across all the regimes of seismic ruptures described above. However, Figure 4 shows that the scaling between
Tr and R varies with asperity radius. For seismic ruptures nucleating at the center, Tr ∼ R; whereas on asperities
with lateral ruptures Tr ∼ R1∕2 (consistent with Tr ∼ M1∕6

0 scaling and constant stress drop). Aseismic events
have shorter Tr compared to seismic central ruptures. In the following sections, we develop crack models
to understand the scaling of Tr with R (section 3) and the variation of stress drop with asperity dimension
(section 4).
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Figure 4. Scaling of Tr with asperity radius. For aseismic events, we define Tr as the time between peaks in slip velocity.
We denote as slow slip brief slow slip events such as those in Figure 2.

3. Estimating Tr(R) From Crack Models

We estimate the recurrence interval by treating aseismic and seismic slip on the asperity as cracks and deter-
mine their propagation or arrest based on energy balance concepts (e.g., Freund, 1990; Griffith, 1921). This
approach is analogous to the estimation of the critical nucleation length by Rubin and Ampuero (2005) and
to the estimation or recurrence interval on vertical antiplane faults by Werner and Rubin (2013). As shown
by Irwin (1957), these energy criteria can be expressed in terms of stress intensity factors (SIF). We consider
the following contributions to the SIF, K : (1) Kl , the SIF of a stress-free crack subject to external loading (creep
surrounding the asperity); (2) KΔ𝜏 , the SIF due to changes in stress within the crack due to the variation in
strength with slip velocity. A crack can grow if the total SIF is at least equal to the toughness Kc:

Kl + KΔ𝜏 ≥ Kc, (7)

which is related to the fracture energy Gc by

Kc =
√

2𝜇′Gc (8)

following the convention of Tada et al. (2000). We use this framework to model two phases of slip on the
fault: the interseismic inward propagation of the creep front, and the propagation or arrest of a seismic rup-
ture. Equation (7) takes on two limiting cases: considering inward growth of the creeping zone, the slip speed
immediately behind the crack tip is small (e.g., close to plate rate), thus the fracture energy, and hence Kc, is
small, and Kl ≃ −KΔ𝜏 . On the other hand, considering the energy balance during a full seismic cycle, the total
stress change Δ𝜏 = 0 and equation (7) becomes Kl = Kc (this is the argument introduced by Werner & Rubin,
2013, to estimate Tr for vertical antiplane faults). As shown in the following section, these processes define
two time scales: the time required for nucleation (Tnucl), and the time when a rupture can propagate over the
full asperity (Tfull).

3.1. Small Asperities (Central Ruptures)
First, we consider asperities small enough that the creep front reaches the center. Figures 5a and 5b show
the propagation of the creep front for asperities of different sizes: Figure 5b shows that the lines collapse to
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Figure 5. (a) Interseismic propagation of creeping front from the edge of the asperity (indicated by the circle) to the center, estimated from peak stresses. The
vertical lines are seismic ruptures. (b) Same plot, with the y axis normalized by asperity radius and the x axis normalized by equation (9). The black lines are the
expected propagation of the front (see text), the red dashed line is the approximate solution derived in Appendix A. (c) Stress profiles as the creep front
propagates inward. Δ𝜏1 is the difference between residual stress after an earthquake (𝜏ss(vco) and (𝜏ss(vpl)), shown by the horizontal dashed lines. As the creep
front approaches r = 0, the slip velocity exceeds vpl and the stress difference decreases (Δ𝜏2).

the same curve when both position and distance are normalized by a factor proportional to R. In Appendix
A, we estimate the equation of motion for the creep front by numerically solving equation (7) for an annular
crack, with stress change given by the increase from a residual steady state stress at coseismic slip speed
𝜏ss(vco) to steady state friction at the fault slip rate 𝜏ss(vpl), that is Δ𝜏 = 𝜏ss(vpl) − 𝜏ss(vco), see Figure 5c. The
black and dotted lines in Figure 5b are the expected position of the front, with and without the contribution
from fracture energy. Overall, this model explains the creeping front propagation reasonably well, with a few
differences: (1) early in the cycle, the creeping front propagates faster than expected, due to afterslip in the
velocity-strengthening region loading the fault faster than plate velocity; (2) toward the end of the cycle, the
crack slips faster than expected, due to stressing from the opposing creep front, while our model assumes
creep at v = vpl. In Appendix A we find that, neglecting fracture energy, the time required for creep to reach
the center and nucleate a rupture is

Tnucl(R) =
4Δ𝜏R
𝜋𝜇′vpl

≡ R∕ṙc. (9)

where we introduced the characteristic speed for the creep front propagation ṙc = 𝜋𝜇′vpl∕4Δ𝜏 . The numerical
solution is close to the following expression (derived in Appendix A):

a(t) = R
√

1 − tṙc∕R (10)

CATTANIA AND SEGALL 7
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Figure 6. Scaling of Tr with R from the simulation (dots) and crack models (lines). Vertical lines mark the expected
transition between regimes: aseismic to seismic (R∞); central rupture to lateral ruptures (2R∞); onset of partial ruptures
(4.3 R∞), while the transitions observed in the simulations are marked at the top. Tnucl and Tfull are calculated from
equations (13) and (16).

where a is the distance of the crack from the center; equation (10) is shown by the dashed red line in Figure 5b.
As the crack approaches the center, its propagation speed and slip velocity increase and eventually the lat-
ter reaches vdyn. For the smallest asperities simulated, we see a brief elastodynamic event that decays as it
expands outward before reaching the edge of the asperity (Figures 1, top and 7); these short rupture events
are followed by a crack-like rupture expanding to the edge of the asperity. Since the moment of the second
event is 1 to 2 orders of magnitude larger than the initial acceleration (as can be seen from the slip profiles
in Figure 1), we consider the second event to be the repeating earthquake. This earthquake is well described
as a constant stress drop crack propagating into the creeping region, where the stress is nearly uniform and
equal to the steady state strength at vpl, that is, 𝜏ss(vpl). The SIF of an elliptical crack in a uniform stress field
is an increasing function of its size (e.g., Madariaga, 1977). Therefore, once nucleated the ruptures tend to
accelerate and expand until they reach the edge of the asperity. As seen in the simulations, all accelerating
events on faults nucleating from the center result in full ruptures, or they are followed by a full rupture within
a short time interval (3–8 orders of magnitude shorter than the cycle duration, as seen in Figure 1), so that
in this regime the recurrence interval is determined by Tnucl. The linear trend in Tr versus R (Figures 4 and 6)
is in agreement with equation (9). For even smaller (aseismic) asperities, we expect a similar behavior, with
vco replaced by the slip speed during slow events. This speed, and hence Δ𝜏 , decreases for smaller asperities,
which explains why aseismic faults (R∕Lb < 12.5) have shorter Tr than expected from equation (9) calculated
with Δ𝜏 = 𝜏ss(vpl) − 𝜏ss(vco) for seismic slip speeds (Figure 4).

We test the dependence of this scaling on rate-state parameters by running simulations with the same ratio
R∕R∞ (where R∞ is the nucleation radius, defined in equation (12)), fixed b, and variable a∕b (Figure 7). We
observe essentially the same behavior and the scaling predicted by equation (9) for a∕b between 0.3 and 0.75.
Larger a∕b (0.85) gives rise to both standard ruptures (constant stress drop cracks), and elastodynamic events
decaying as they expand, followed by slow crack-like ruptures. This pattern results in a period-2 cycle, with
the duration of each subcycle consistent with equation (9), as discussed below.

We note that equation (9) has the same form as the recurrence interval estimated assuming a constant stress
drop circular crack releasing an average slip vplTr = (16∕7)Δ𝜏R∕𝜇′, but it is a factor of 7∕4 larger. This is con-
sistent with the fact that a fraction of the nominal slip deficit vplTr is released by interseismic creep. There is
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Figure 7. (top) Cycles for asperities with R∕R∞ = 1.26 and variable R and a∕b, showing slip velocity and shear stress. For a∕b = 0.75 and 0.85 the main quake
(reaching the edge of the asperity) is preceded by brief fast slip. For a∕b = 0.85, the velocity reached by the subsequent event (and determining the stress at the
beginning of the following cycle) alternates between ∼ 10−4 –10−3m/s (event marked as 1) and ∼0.1 m/s (event marked as 2). Fast events have a higher stress
drop. (bottom) Maximum slip velocity versus time normalized by T0 (from equation (13)). Note the period-2 cycle for a∕b = 0.85, due to the alternation of seismic
and slow events: fast events, with a higher stress drop, are followed by longer cycles.
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also a conceptual difference between equation (9) and the classical argument. The latter is based on assump-
tions about the rupture occurring at the end of a cycle: it causes a stress drop Δ𝜏 and average slip vplTr . In
contrast, in our derivation these quantities are related to the interseismic phase: vplTr is the slip accumulated
in the velocity-strengthening region during a cycle, and not necessarily equal to the coseismic slip; and Δ𝜏
is the stress increase between the end of the previous earthquake and steady state creep at the loading rate
(equal to the stress drop of the previous event). While for period-1 cycles these are equivalent (since all events
have the same Δ𝜏), the period-2 cycle for a∕b = 0.85 gives us the opportunity to test these two hypotheses.
Every other event is a slow earthquake and has lower stress drop. According to the classical argument, the
longer recurrence intervals are expected to be followed by larger events (size predictable); while according
to our argument, larger quakes should precede the longer recurrence interval, because the large stress drop
will slow down subsequent creep propagation (time predictable). As shown in Figure 7, the slow creep events
are followed by shorter cycles, consistent with equation (9); these cycles are about 1.4–1.6 times shorter than
the cycles following standard ruptures. The predicted ratio of recurrence times with Δ𝜏 ∼ log(vco∕vpl), and
vco equal to 1 mm/s and 0.1 m/s for slow and fast ruptures is 1.3.

3.2. Onset of Lateral Ruptures
As predicted by a linear stability analysis (Ruina, 1983), a creeping crack with velocity-weakening friction
becomes unstable above a critical dimension (nucleation size), so that lateral ruptures occur on asperities with
a radius exceeding some size. Rubin and Ampuero (2005) estimated a critical dimension for 1-D cracks and
aging law friction by treating the rupture as a constant stress drop crack with a SIF equal to the toughness
determined from rate-state friction. Assuming steady state friction at seismic slip speeds immediately behind
the crack tip, they estimate the maximum half length for stable propagation to be

L∞ = 1
𝜋

( b
b − a

)2

Lb (11)

For a 2-D crack, we can assume that the rupture starts as a circular, penny-shaped crack within the creeping
region of the asperity. For this geometry, we have KΔ𝜏,p = (2∕𝜋)KΔ𝜏,1−D, where the subscripts p (penny) and
1-D refer to the crack shape. The critical radius in three dimensions is thus

R∞ = 𝜋

4

( b
b − a

)2

Lb (12)

As in the analysis of Rubin and Ampuero (2005), this is an upper limit for the nucleation dimension,
valid at large slip velocities (e.g., v ≫ vpl). Since instabilities start within the creeping annulus in the
velocity-weakening region (Figure 2), they can occur when the creep front has penetrated a distance Lpen =
2R∞. With the parameters used in our numerical simulations, Lpen ∼ 25Lb = 100 m. If R = 2R∞ seismic rupture
is expected to start at the center of the asperity, such that this length marks the transition between central
and lateral ruptures, which in our simulations occurs at R ≃ 22Lb = 88 m, close to the 25Lb estimate.

At R < R∞ = 12.5Lb, a constant stress drop crack expanding from the center encounters the edge of the
asperity before reaching vdyn. The slip accelerations observed as the creep front reaches the center (discussed
in section 3.1) have a different geometry and nonuniform stress drop and might in principle reach vdyn even
on asperities with R < R∞; while this does not occur in our simulations, Chen and Lapusta (2009) found small
events reaching seismic velocities at R = 0.93R∞. In our simulations, we find that the transition between
aseismic and seismic slip occurs slightly above R∞ = 12.5Lb (between R = 12.5Lb and 15.7Lb, Figure 6).

To estimate the time to nucleation since the last rupture, we make use of the equation of motion of the
creep front derived in Appendix A. Setting a(t) = R − 2R∞ in equation (10), and combining this result with
equation (9), we obtain the nucleation time:

Tnucl =
{

R∕ṙc R < 2R∞
4R∞

(
1 − R∞∕R

)
∕ṙc R ≥ 2R∞

(13)

This is shown by the blue line in Figure 6, which provides a close fit to the simulated recurrence times. For
R ≫ R∞, Tnucl = 4R∞∕ṙc: the time to nucleation becomes independent of R. This is not surprising since this
is approaching the 2-D limit, when the creep front propagation is independent of R. However, it would be
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unphysical for the recurrence interval for full ruptures to be constant above a certain source radius. To under-
stand earthquake cycles for R ≥ 2R∞, we need to consider the conditions that determine rupture evolution
and arrest, discussed in the following section.

3.3. Rupture Propagation and Arrest for R ≥ 2R∞
Ruptures nucleating laterally have to propagate through the locked part of the asperity (r < R−2R∞). As they
propagate toward the center, they encounter lower stresses (since the stress imparted by creep decreases
with distance from the asperity edge: equation (A5) and Figure B2). Therefore, ruptures may arrest within the
locked region and not evolve into full ruptures (as previously observed by, e.g., Lapusta, 2003; Rice, 1993;
Wu & Chen, 2014); the recurrence interval, taken as the time between full ruptures, will be longer than Tnucl.
We estimate the time between full ruptures by requiring that the minimum value of the SIF during rupture
propagation balance Kc (the toughness associated with a crack slipping at coseismic speeds; e.g., Werner &
Rubin, 2013). In Appendix B we show that in this case equation (7) reduces to

K∗
l = Kc (14)

where K∗
l is the minimum value of the SIF during propagation for a crack loaded by creep since the previous

rupture. While an exact calculation of K∗
l requires knowing the shape of the crack as it evolves, dimensional

arguments in Appendix B lead to

K∗
l =

𝜇′vplt√
R

𝜙, (15)

where𝜙 is a nondimensional factor related to the shape of the rupture and its position within the asperity.The
minimum time for full ruptures is therefore

Tfull =
Kc

𝜙

√
R

𝜇′vpl
. (16)

Assuming that the recurrence interval is close to Tfull, we expect the scaling Tr ∼
√

R. This estimate of Tfull

ignores the influence of stress perturbations due to prior partial ruptures, which can be significant, and is
therefore approximate. In order to estimate plausible values of Tfull, in Appendix B we calculate 𝜙 numerically
for a simplified rupture history, which gives 𝜙 = 0.76. We point out that this value, and hence the minimum
radius at which partial ruptures occur, is an order of magnitude estimate, since it greatly simplifies the shape
and evolution of seismic ruptures: we discuss this issue in more detail below.

We calculate Kc in Appendix B, following Rubin and Ampuero (2005):

Kc =
√
𝜇′dcb𝜎 log

(
vco𝜃i

dc

)
(17)

where 𝜃i is the state variable just outside the crack tip. Due to healing, this increases with time since the pre-
vious rupture. For the range of recurrence intervals considered, this has an effect of less than 10% on Kc, and
for simplicity we set 𝜃i = 1 year.

Partial ruptures can occur when Tnucl < Tfull. Setting the second of equation (13) equal to equation (16), with
Δ𝜏 = 𝜏ss(vpl)−𝜏ss(vco) = (b−a)𝜎 log

(
vco∕vpl

)
, and with Kc given by equation (17), the critical radius for partial

ruptures is the solution of √
R∞

R

(
1 −

R∞

R

)
=

√
𝜋

8𝜙

log
(

vco𝜃i∕dc

)
log

(
vco∕vpl

) (18)

which, for the values of 𝜙 and 𝜃i used above, is satisfied by R = 4.3R∞. We note that equation (18) is a func-
tion of the ratio R∕R∞ and numerical constants, with only a weak dependence on the state variable and slip
velocities. The dependence on stress drop and fracture energy (or, equivalently, rate-state parameters and 𝜎)
are included in the definition of R∞. As for the previous transitions in rupture style, the ratio R∕R∞ defines the
onset of partial ruptures. In the simulations, we find that the transition occurs between R = 6R∞ and R = 8R∞.
This difference is most likely due to the approximations involved in estimating 𝜙, as discussed below.
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Figure 8. Scaling for asperities in the partial ruptures regime (R∕R∞ ≥ 8), with fixed b and variable b − a. (a) Simulated
cycles, with different rupture styles: partial ruptures (crosses), full ruptures that start with concave horseshoe shape
(triangles), and convex full ruptures (circles). (b) Scaling expected from the classic argument: Tr ∼ RΔ𝜏 ∼ R(b − a) (top)
and from the Kl ≥ Kc argument (Tr ∼

√
Rb) (bottom). The simulated events have different stress drops but the same

fracture energy (from equation (A14)), so the Kl ≥ Kc argument predicts that they should fall on the same line.

3.4. Ruptures in the R ≫ R∞ Regime
To test the criterion for full ruptures expressed by equation (16), we ran simulations with different parameters

in the velocity-weakening region (b − a = 0.01, 0.016), shown in Figure 8. These values are chosen to cover

a wide range of asperity dimensions R, while remaining in the large R∕R∞ regime and maintaining computa-

tional feasibility. The line defining Tfull estimated above (equation (16)) separates most partial ruptures from

full ruptures, as expected; but there are some exceptions. In some cases (mostly at R∕R∞ = 8, and a single

event for R∕R∞ = 10), we observe convex ruptures starting with a horseshoe shape, which first propagate

along the creeping annulus and then cover the center (triangles in Figure 8). Not surprisingly, the minimum

time for full ruptures with 𝜙 estimated in Appendix B assuming an elliptical rupture (dotted line) fails to cap-

ture events with such a different rupture style. The disappearance of these events at larger R∕R∞ is probably

due to this mode of propagation being determined by the creeping annulus, which becomes increasingly

less significant (as a fraction of the asperity) as R∕R∞ → ∞. Since all simulations have the same value of
b (and hence fracture energy and Kc), we expect the recurrence interval to follow the scaling

√
R. On the

other hand, the scaling derived from the classical argument assuming slip to be proportional to vplTr predicts

Tr ∼ RΔ𝜏 ∼ R(b − a) (both scalings are shown graphically in Figure 8). In spite of the scatter in recurrence

intervals, the plot suggests that simulations are better explained by the Kl ≥ Kc argument. While we chose

small a∕b values for computational reasons, we note that larger values of a∕b (∼ 0.9) are favored by labora-

tory experiments (Blanpied et al., 1998). For small asperities, we observe more complex slip histories for large

a∕b, and in particular a∕b = 0.85 (Figure 7), in agreement with previous studies (Noda & Hori, 2014; Rubin &

Ampuero, 2005); it is plausible that larger values of a∕b would result in different behavior at large R∕R∞.

In summary, we expect the recurrence interval to scale as Tr = Tnucl ∼ R on small asperities (R < 2R∞),
and approximately as Tr = Tfull ∼

√
R on larger asperities (R ≳ 4.3R∞), and with an intermediate expo-

nent between the two (when Tr ∼ Tnucl, but Tnucl scales sublinearly with R). This is in broad agreement with

numerical simulations (Figure 6).
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Figure 9. (a) Slip profiles for central ruptures with respect to the slip at the boundary at the onset of a rupture. Thick lines are the final slip distribution, dotted
lines are the slip when the slip speed reaches vdyn (i.e., at the start of an earthquake). (b) Slip profiles at the end of a seismic event, with lengths normalized by R.
(c) Stress drops in the simulations (dots) and expected from equation (19), which takes into account the aseismic nucleation phase (dotted line). Stress drops are
normalized by Δ𝜏 = 4.2 MPa, which is the stress drop derived from the slip profile in the simulations and the expected limiting value as R ≫ R∞ .

4. Stress Drops and Scaling Between Tr and M0

Crack models allow us to derive scaling relations between recurrence interval and source dimension. To under-
stand the scaling with seismic moment (M0 ∼ 𝜇Δ𝜏R3), we need to consider how stress drops scale with source
radius. Figure 9b shows how the seismic moment scales with R in the simulations, obtained from equation (1)
with M0 given by integrating slip over the area during time steps with v ≥ vdyn anywhere on the asperity. For
the five smallest faults, an increase in stress drop with fault dimension is visible: this is due to a fraction of the
seismic moment being released during the nucleation phase. Slip profiles during the seismic phase are well
approximated by an elliptical crack with constant stress drop until the crack reaches the edge of the asperity
and by a circular, penny-shaped crack at the end of the earthquake. This is consistent with a constant and spa-
tially uniform stress drop during rupture growth and the same stress drop for earthquakes of different size as
shown in Figure 9. However, Figure 9a shows that some of the slip is accumulated aseismically and thus does
not contribute to the coseismic moment, defined as the moment released when v ≥ vdyn.

As the crack expands, the slip velocity increases. The crack starts slipping at seismic velocities once it reaches
a finite size (R∞). We can then calculate the moment released during the nucleation phase from the moment
of a penny-shaped crack of radius R∞. The coseismic moment is then given by

M0 = M0tot − Maseis =
16
7
Δ𝜏

(
R3 − R3

∞
)

(19)

where the first term is the total moment released from the beginning of nucleation phase to the end of the
earthquake. The ratio between seismic and total moment is 1 −

(
R∞∕R

)3
, and it quickly approaches 1 (e.g.,

almost 90% of the moment is released coseismically for R = 2R∞, which corresponds to the transition between
central and lateral ruptures). This indicates that the variation in stress drops is only expected to occur over a
limited range of fault dimensions.

From the simulations, we find that crack reaches v = vdyn when the semimajor and minor axes reach 55 and
42 m, respectively, in the inplane and antiplane directions, close to our estimate of R∞ (50 m). As expected, this
dimension is approximately independent of asperity dimension R (Figure 9a). We estimate the total moment
M0tot directly from the slip profile: M0tot = 𝜇𝜋SR2∕2, where S is the slip at the center of the asperity. We find that
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Figure 10. Scaling of Tr versus M0. Tnucl and Tfull from equations (13) and (16) and the seismic moment from
equation (19). Transitions between rupture styles are determined by R∕R∞ , not moment: depending on physical
properties (a, b and 𝜎) they would occur at different magnitude thresholds.

the scaling of M0tot from the simulations is consistent with self-similarity, as expected from the fact that the slip
profiles in Figure 9a have roughly the same shape. Furthermore, the scaling of M0 with R is in agreement with
equation (19). For the smallest fault (R ∼ 1.3R∞), the stress drop estimated from M0 is about 50% smaller than
the stress drop estimated from M0tot. Finally, we are in a position to combine the scaling of seismic moment
with R and the dependence of Tfull and Tnucl (equation (16) and (13)). This is shown in Figure 10. While some
slight variations in the exponent are seen, we find that in the range R∞ < R ≲ 4.3R∞, the predicted trend is
close to Tr ∼ M1∕6

0 . For R ≳ 4.3R∞, we expect Tr ∼ M1∕6
0 scaling from constant stress drop and Tfull ∼

√
R. This

is the central result of the paper.

Figure 11. Average slip on the asperity during the cycle for the fault with R = 16Lb .
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Figure 12. Average slip on the asperity during the cycle for the fault with R = 50Lb . 𝛿x are labeled as in equation (20).

5. Coseismic and Interseismic Slip Budget

Figures 11 and 12 show the contribution of seismic and aseismic slip on asperities with different R∕R∞. Aseis-
mic stress release occurs in various phases of the seismic cycle: (1) during the interseismic period, as creep
fronts propagate inward and parts of the asperities slip at a speed of the order of vpl; (2) during aseismic slip
episodes such as those shown in Figure 2; (3) during the acceleration and deceleration phase of an earthquake.
The fraction of aseismic slip in phase (3) depends on the definition of coseismic slip velocity. The condition
that the long-term slip rate on the asperity matches the loading rate can be expressed as follows:

Stot = vplTr = Sseis + Screep + Snucl + Spost (20)

In Appendix C we derive analytical expressions for Screep and Snucl as a function of R∕R∞. The derivation of
Snucl is essentially equivalent to equation (19), and it is based on the observation that slip shown by the dot-
ted elliptical profiles in Figure 9 accumulates between the time when the creep front reaches the center and
the onset of the seismic phase (blue and yellow lines in the slip profiles in Figure 1); on the other hand, Screep

Figure 13. (left) Slip budget estimated from equations (C1), (C3), and (C4) normalized by the slip deficit on an asperity with R = R∞ . (right) Fraction of seismic to
total slip. Circles indicate the ratios observed in simulations; the black line is equation (21), assuming that Δ𝜏 in equation (C4) is the same as in equations (C1)
and (C3). The gray area shows the range obtained allowing the stress drop during nucleation to differ from the stress increase during creep propagation
(Δ𝜏nucl = [0.7–1.3] Δ𝜏creep).
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Figure 14. Combination of creep rate, stress drops, and nucleation lengths required to satisfy the scaling observed at
Parkfield according to equation (28). Each line shows creep rate vpl as a function of stress drop Δ𝜏 for a particular value
of R∞ . The parameters chosen by Chen and Lapusta (2009) resulted in R∞ ∼ 83 m and Δ𝜏 ∼ 4 MPa, and the authors
inferred a creep rate of 4.5 mm/year (smaller than the value of 23 mm/year used by Nadeau & Johnson, 1998). This
interpretation is shown by the ellipse marked “CL2009.” Bars at the top indicate seismological estimates of stress drops:
Abercrombie, (2014; A2014, Parkfield, showing only well-constrained values); Imanishi & Ellsworth (2006; IE2006,
Parkfield, with the entire range shown by the dotted line and 1 standard deviation by the thick line). Uchida et al. (2007,
U2007, offshore Kamaishi, Japan, with the dot marking the value for the Mw4.9 repeater and the bar marking values
estimated for smaller events). The shaded area indicates plausible values of parameter combinations, based on observed
stress drops and nucleation lengths inferred from the small observed magnitudes (see text).

approximates the slip due to creeping at v ∼ vpl (black lines in Figure 1). Simulations do not exhibit signifi-
cant postseismic slip within the velocity-weakening asperity (Figures 11 and 12), consistent with results from
spring slider simulations (Rubin & Ampuero, 2005; Segall, 2010). We therefore neglect this process as well as
the contribution of transient aseismic slip episodes and partial ruptures for R ≳ 4.3R∞. Because of the latter
assumption, these results are strictly valid only for R ≲ 4.3R∞. Figure 13a shows predicted Stot, Screep, and Snucl

as a function of R∕R∞. As expected, Stot has the same trend as Tr (Figure 6). The slip from interseismic creep
is also proportional to Tnucl for R < 2R∞ (asperities on which the creep front reaches the center); in Appendix
C we show that Screep∕Stot = 0.25. For larger values of R, interseismic creep is confined to part of the asper-
ity r > R − 2R∞, and its contribution decreases with R. Finally, the fraction of slip during the nucleation phase
decreases monotonically with R. Combining these results we estimate the ratio of seismic to total slip as

Sseis

Stot
= 1 −

Sas

Stot
= 1 −

Screep + Snucl

Stot
(21)

shown in Figure 13b. The ratio of seismic to aseismic slip derived from simple crack models provides a
reasonable fit to the trend the simulations.

6. Discussion

Based on energy balance arguments and the scaling of SIFs with asperity dimension, we identified the
following regimes:

1. R < R∞: asperities are aseismic.
2. R∞ < R < 2R∞, creep completely erodes the asperity and seismic rupture nucleate from the center. The

recurrence interval scales as Tr ∼ R. Stress drops increase weakly with R.
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3. 2R∞ < R ≲ 4.3R∞: creep partially erodes the asperity before ruptures nucleate. When this occurs, the elastic
energy accumulated from creep is sufficient for the rupture to propagate across the entire locked region,
so that every nucleation results in a full rupture. The recurrence interval scales with Tr ∼

√
R.

4. R ≳ 4.3R∞: the energy required for a rupture to propagate through the locked region exceeds the energy
required for nucleation, and partial ruptures occur. The recurrence interval of full ruptures is expected to
scale as Tr ∼

√
R.

These results are broadly in agreement with Chen and Lapusta (2009), who found similar transition when
increasing R with constant rate-state parameters, and Kato (2014). It is important to note that the transitions
depend on the ratio R∕R∞, and not on the earthquake moment: the x axis in Figures 3 and 10 would take dif-
ferent values for different rate-state parameters or normal stress. The onset of partial ruptures at a sufficiently
large value of R∕R∞ is essentially based on a comparison between the nucleation length and the overall asper-
ity dimension. The fracture energy argument leading to Rnucl = R∞, proposed by Rubin and Ampuero (2005)
and confirmed for circular asperities by Noda and Hori (2014), only applies for sufficiently large values of a∕b
(> 0.37). For smaller a∕b, nucleation occurs on a length scale of ∼ 1.7Lb (Dieterich, 1992; Noda & Hori, 2014):
therefore, in this case we expect all transitions to occur at values of R∕R∞ different from those predicted here.
For example, this is consistent with the observation that R∕R∞ = 8 produces partial ruptures with a∕b = 0.5,
0.75, but not with a∕b = 0.2 (Figure 8). For a∕b = 0.2, the nucleation radius (Rnucl = 1.7Lb) is larger than
R∞ by a factor of 1.4; the ratio of asperity radius to nucleation radius is therefore lower (R∕Rnucl = 5.7). As
expected, this asperity exhibits a behavior similar to the one with a∕b = 0.75 and R∕R∞ = 6 (the second
largest asperity in Figure 6), which does not have partial ruptures. But since such low values of a∕b are not sup-
ported by lab experiments (e.g., Blanpied et al., 1998), in realistic cases we expect the ratio R∕R∞ to determine
rupture behavior.

Interestingly, we find that the scaling between seismic moment and recurrence interval arises from different
physical reasons depending on R. For small asperities, the recurrence interval scales linearly with dimension; in
this range of R, it is the increase ofΔ𝜎 with R that gives rise to Tr ∼ M1∕6

0 scaling. The nonconstant stress drop as
R approaches the nucleation length is not surprising: crack models which predict constant Δ𝜏 assume a point
source at t = 0, while the existence of a finite nucleation dimension breaks self-similarity as R approaches
R∞. For asperities with R> 2R∞, on the other hand, the relationship between Tr and M0 is dominated by the
Tr ∼

√
R scaling, which originates from the dependence of the SIF on asperity dimension. In other words, we

recover the observed scaling by considering seismic ruptures as releasing accumulated elastic energy rather
than stress.

A simplification in our crack models is the neglect of inertia when balancing the SIF and fracture toughness.
While this assumption is valid for modeling creep propagation (and hence Tnucl), when applied to seismic
ruptures it may lead to an underestimation of Tfull. An assumption behind our analysis is that the distribution
of M0 is dominated by variations in asperity dimension R, while spatial variations in physical properties play a
secondary role. In reality, frictional parameters and normal stress are not necessarily uniform, and R∞ can vary
spatially. Assuming that such variations are independent of scale, this will generate scatter around the trend
modeled here (since we found Tr ∼ M1∕6

0 across a wide range of R∕R∞) but not affect the trend itself; since the
results derived here imply that each family of asperities with given physical properties would fall on a Tr ∼
M1∕6

0 line with a different proportionality constant. Additional heterogeneity with each asperity, due to fault
roughness or variations in frictional and elastic properties, will also lead to more scatter in source properties
and scaling. With this caveats in mind, below we discuss possible seismological observations predicted by
our models.

6.1. Relating Observed Recurrence Intervals to 𝚫𝝉 and R∞
The analytical expressions for Tnucl, Tfull and M0 (equations (13), (16), and (19) and Figure 10) allow us to esti-
mate fault properties from the relationship between seismic moment and recurrence interval observed in
nature. Nadeau and Johnson (1998) observed the relationship

log10(Tr) = 0.17 log10(M0) + 6.0 (22)

with Tr is the recurrence interval in seconds and M0 the seismic moment in Newton meter. Chen et al. (2007)
found that the same expression applies to repeating sequences in Taiwan and Japan, after rescaling the
recurrence interval by the background creep rates in each location.
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In the regime R ≥ 4.3R∞, we obtain this scaling from M0 and Tfull (equations (1) and (16)): the constant of
proportionality between Tr and M1∕6

0 is a function of fracture toughness Kc. On the other hand, for R < 4.3 the
recurrence interval Tnucl as a function of M0 is given by equations (13) and (19), which are functions of stress
drop and nucleation length. We can reconcile the two by noting the relationship between Kc (equation (17)),
R∞ (equation (12)), and Δ𝜏 = 𝜏ss(vpl) − 𝜏ss(vco), with 𝜏ss from equation (4):

Kc

Δ𝜏
=

√
dcb𝜎𝜇′ log

(
vco𝜃i∕dc

)
(b − a)𝜎 log (vco∕vpl)

≈ 1.3

√
dcb𝜎𝜇′

(b − a)𝜎
= 2.6

√
R∞∕𝜋 (23)

where we estimated the logarithmic terms as in section (3.3). Combining this expression with equation 16
and taking the ratio between Tfull and M1∕6

0 (with equation (1) relating M0 to R), we get

Tfull

M1∕6
0

=
2.6(7∕16)1∕6

√
R∞∕𝜋Δ𝜏5∕6

𝜙𝜇′vpl
≈

1.6
√

R∞Δ𝜏5∕6

𝜇′vpl.
(24)

where we used 𝜙 = 0.76, as before. For R < 4.3R∞, the scaling is given by Tnucl(R) and M0(R) (equations (13)
and (19)). Figure 10 shows that these expressions yield a scaling close to Tr ∼ M1∕6

0 , but with some slight
variations. To facilitate comparison with equation (22), we take the ratio between Tr and M1∕6

0 :

Tnucl

M1∕6
0

=
√

R∞

ṙcΔ𝜏1∕6
f (R∕R∞) (25)

with

f (x) =
⎧⎪⎨⎪⎩
(

7
16

)1∕6
x

(x3−1)1∕6 R < 2R∞(
7

16

)1∕6
4(1−1∕x)
(x3−1)1∕6 R ≥ 2R∞.

(26)

The function f (R∕R∞) quantifies the variations of Tnucl around a line of constant M1∕6
0 (see Figure 10). It is sin-

gular at R = R∞ (since the stress drop, and seismic moment, tend to 0); for R∕R∞ between 1.1 and 4.3, it
ranges between 1.1 and 1.35, with an average value of 1.28. Therefore, we take f (R∕R∞) ≈ 1.3 and recalling
that ṙc = 𝜋𝜇′vpl∕4Δ𝜏 , we can write

Tnucl

M1∕6
0

≈
1.6

√
R∞Δ𝜏5∕6

𝜇′vpl
(27)

Note that equations (27) and (24) are the same, as expected from visual comparison of Tnucl (for R < 4.3R∞)
and Tfull in Figure 10. We are now in a position to relate the theoretical scalings with the observations. Setting
equation (27) equal to equation (22), we find the constant of proportionality between M1∕6

0 and Tr :

Tr

M1∕6
0

=
1.6

√
R∞Δ𝜏5∕6

𝜇′vpl
≈ 106 (28)

Chen and Lapusta (2009) found that numerical simulations with vpl = 23 mm/year (the creep rate inferred by
Nadeau & Johnson, 1998, at Parkfield) produced shorter recurrence intervals than observed, and suggested
that the long-term creep rate must be lower (4.5 mm/year). Equation (28) shows that the recurrence rate is
determined by the creep rate, the nucleation length, and the stress drop. Combinations of these quantities
which can explain the observed scaling are shown in Figure 14: each line indicates the background creep
velocity required to explain the observed recurrence interval, as a function of Δ𝜏 and for a given value of R∞.
In spite of the approximations in equation (28), we recover the result from the numerical simulations by Chen
and Lapusta (2009): their value of stress drop and R∞ (∼4 MPa and∼83 m, respectively) require vpl = 4.5 mm/yr
to explain the observed recurrence interval. They also noted that increasing dc results in a longer recurrence
interval, as can be seen in Figure 14; however, the nucleation length in this case becomes too large to explain
the small magnitudes found at Parkfield (several events close to Mw ∼ 0, Nadeau & Johnson, 1998).
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It is plausible that the local creep rate near the repeaters may be lower or higher than 23 mm/year: as Nadeau
and Johnson (1998) note, the geodetic inversion by Harris and Segall (1987), on which this value is based,
shows variations between 4 and 35 mm/year near the repeater sequences. However, Chen et al. (2007) noted
that sequences of repeating events in Taiwan and Japan follow the same scaling after renormalizing the recur-
rence interval by inferred creep rate in each region, and this implies that the creep rate would have been
overestimated by the same factor in these locations. In alternative, a nucleation length of 10–100 m and a
creep rate of about 23 mm/year can explain the observed Tr if stress drops are between 30 and 100 MPa, some-
what on the higher end of seismological values estimated for Parkfield repeaters (Abercrombie, 2014; Imanishi
& Ellsworth, 2006) and in Japan (Uchida et al., 2007), shown in Figure 14. A smaller nucleation length (∼ 1
m) may be more realistic considering that even smaller events have been observed at Parkfield (Mw ≲ −0.5,
e.g., Nadeau & Johnson, 1998; W. Ellsworth, private communication, 2018); this requires either very high stress
drops (∼400 MPa for vpl = 23 mm/year), or a much lower creep rate or shear modulus; or a combination of
these. The large uncertainties in estimated stress drops (see, e.g., Kaneko & Shearer, 2014, and section 6.2)
and in the local creep rate make it challenging to determine which of these factors is dominant. Based on the
available stress drops measurements, our preferred interpretation is that stress drops are in the 10–100 MPa
range, and local creep rates are probably lower than 23 mm/year.

Equation (28) provides a physical interpretation for the scaling first observed by Nadeau and Johnson (1998),
equation (22). A more commonly used form of this expression relates the interseismic slip vplTr to the seismic
moment and can be obtained by multiplying both sides of equation (28) by vpl. Based on the observations
of Nadeau and Johnson (1998) at Parkfield, several studies have used small repeaters as creepmeters (e.g.,
Materna et al., 2018; Turner et al., 2015; Uchida et al., 2003, 2006). Our expression shows that estimating creep
rates from the Parkfield observations is appropriate, as long as the nucleation length and stress drops are
comparable to Parkfield. Since

√
R∞ scales inversely with stress drop (equation (23)), the dependence of Tr on

Δ𝜏 is weak; we can see this from equation (16), or by combining equations (23) and (28):

Tr

M1∕6
0

=
2
√

dcb𝜎𝜇′

𝜋𝜇′vplΔ𝜏1∕6
(29)

Variations in normal stress, 𝜇′, dc, or b, on the other hand, affect the recurrence interval more strongly.
Therefore, the universal scaling observed by Chen et al. (2007) implies comparable fracture energy in the
regions considered.

6.2. Observations Near the Nucleation Dimension
The existence of a finite nucleation dimension (R∞) introduces a break in self-similarity. While the value of R∞
estimated here is specific to rate-state friction with certain parameters, we expect this result to be general:
since the stiffness of a constant stress drop crack is inversely proportional to its size, slip on cracks below a
critical dimension is aseismic (e.g., Ruina, 1983).

Could this variation in stress drop be observed in nature? The main difference between a numerical simulation
and real earthquakes is that with simulations we know the asperity dimension. Therefore, when estimat-
ing stress drops, the larger fraction of slip released aseismically on smaller asperities leads to lower stress
drops. However, the existence of a finite nucleation dimension also shortens the distance a rupture propa-
gates before reaching the edge of the asperity. Asperity dimension is commonly estimated from the rupture
duration, inferred from the corner frequency and assuming an expanding circular crack with constant rupture
velocity (Kaneko & Shearer, 2015; Madariaga, 1977; Sato & Hirasawa, 1973). For a rupture starting at r = R∞,
the rupture duration will be shorter: in our simulations, it is proportional to R − R∞. This may lead to underes-
timation of the asperity dimension as R → R∞, and overestimation of the stress drops. To further complicate
matters, the rupture velocity is not constant during this phase (since the crack is still accelerating). Therefore,
smaller asperities have lower average rupture velocity, which may partially counteract the previous effect.
These results indicate that assuming a circular source expanding at constant velocity may lead to large biases
in the estimation of source properties at dimensions near R∞. We point out that the definition of earthquake
used here (based on a velocity threshold) probably does not accurately reflect the way seismic ruptures are
recorded, making it difficult to directly translate our results into observable variations in source properties. In
fact, a similar study by Kato (2012b) found constant stress drops for ruptures nucleating at the center, the dis-
crepancy most likely explained by the use of a lower velocity threshold (0.01 m/s), which resulted in part of
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the nucleation phase (as defined in the present study) being included in the earthquake. Finally, we note that
the final phase of the inward creep propagation for events that nucleate near the asperity center can result
in peak velocities close to vdyn, as described in section 3.1. In our pseudo-dynamic simulations, these events
occurred minutes or hours before the main shock and were significantly smaller; they do however indicate
that nucleation due to the convergence of a creep front may result in a more complex source-time function
than a simple constant stress drop crack.

6.3. Transition Between Central and Lateral Ruptures
Circular sources propagating radially from the center are often used to infer source properties for small to
moderate earthquakes. However, our results suggest that central ruptures only take place on asperities within
a narrow range of dimensions (R∞ < R < 2R∞) and should therefore be quite rare for repeating earthquakes
in nature.

Studies of rupture directivity for moderate to small events (down to about M3.0) indicate a prevalence of
unilateral ruptures, with no variation with magnitude (Abercrombie et al., 2017; Boatwright, 2007; Calderoni
et al., 2015). A transition to central ruptures may occur at smaller magnitudes, for which estimating rupture
directivity (or lack thereof ) is particularly challenging.

6.4. Observations at Large R∕R∞
Finally, we estimated the minimum asperity radius that can host partial ruptures. While the exact dimension
of the transition depends on the details of the asperity shape and assumptions in the derivation, the existence
of such transition can be understood intuitively. Loading from the boundary of an asperity creates stress gra-
dients within it, with lower stresses further away from the loading point. Stress increases everywhere with
time, until an event can nucleate at the edge. If the asperity is large, the rupture will have to penetrate through
a more extended region of lower stress, where it is more likely to arrest. This can also apply to other fault
geometries: for example, Rice (1993),Werner and Rubin (2013), and Herrendorfer et al. (2015) found a simi-
lar transition in 2-D models of faults loaded by creep below the seismogenic zone, and Wu and Chen (2014)
observed this transition in 2-D faults loaded from both ends. Similar concepts have been invoked to explain
rupture arrest in laboratory experiments (Kammer et al., 2015). Kato (2014) also observed a similar transition in
simulations at constant R and variable dc, with low dc resulting in partial ruptures. Moreover, he noted that the
recurrence interval scales as

√
dc, in agreement with the prediction from Tfull in equation (B5) (since Kc ∼

√
dc,

as can be seen from equations (17).

We demonstrated that the recurrence interval of full ruptures for R ≳ 4.3R∞ is expected to scale as Tr ∼
√

R,
leading to the moment scaling observed in nature for repeating events: it is likely that most of the observed
repeaters are in this regime. An interesting question is how the occurrence of partial ruptures may affect the
degree of periodicity of the system. Partial ruptures introduce variability in the stress field, not considered in
our derivation: for example, a rupture may arrest in a low-stress region caused by a previous rupture (Lapusta,
2003) or be promoted by the stress concentrations outside its perimeter. These factors may affect not only the
recurrence interval of full ruptures but also their slip evolution and observed waveforms, practically determin-
ing an upper bound to the characteristic behavior that defines a repeater. We note that the simulation with
partial ruptures presents more variability in recurrence interval than those without (Figure 4); however, due
to computational costs this simulation only produces a small number of full ruptures (three), and we cannot
draw strong conclusions. Further studies are needed to verify whether asperities above a certain dimension
lose the periodicity and characteristic behavior. Some indications of periodicity at large R∕R∞ can be inferred
from the observed magnitude of repeaters, which can be as large as M4.9 − 5.0 (Chen et al., 2009; Uchida
et al., 2012). Combined with the observation that most events above M3.0 are unilateral, and therefore in the
regime where R> 2R∞, this suggests that asperities as large as 20R∞ can have characteristic, quasi-periodic
behavior. An alternative plausible explanation for this magnitude range may be regional variation in R∞. How-
ever, more direct evidence comes from the observation of multiple families of repeaters with overlapping
rupture areas (Uchida et al., 2007): the M4.9 Kamaishi (Japan) repeater experiences interseismic partial rup-
tures, mostly located near its edge (as expected from the crack models presented here). Given that most of
these partial ruptures are between 2 < M < 3, the Kamaishi repeater appears to be an example of a periodic
earthquake many times larger than R∞.

6.5. Slip Budget
Chen and Lapusta (2009) explained the scaling of Tr for small R∕R∞ by the increase of seismic to aseismic
slip ratio with R, as seen in Figure 13; however, direct measurements of the slip partitioning at such small
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magnitudes have proven challenging. Using borehole strainmeter records of small events on the San Andreas
fault, Hawthorne et al. (2016) observed that the fraction of postseismic slip does not vary significantly as a
function of magnitude (note that these observations could not determine whether slip occurred within or
outside of the asperity). Based on our models, we expect aseismic slip on the asperity to occur mainly during
the interseismic and the nucleation phase rather than postseismically. The propagation of the creep front on
a circular fault is such that the creeping area grows approximately linearly with time (it would be exactly linear
for the approximated equation of motion given by equation (10)); for a constant slip velocity behind the creep
front, we thus expect a constant acceleration in moment. The total moment released by this process is not
more than about a quarter of the total moment. The fractional contribution from the nucleation phase, on
the other hand, can be arbitrarily large (Figure 13).

7. Conclusions

We developed crack models of circular asperities embedded in a creeping fault and found that they success-
fully reproduce the observed scaling between the recurrence interval and seismic moment: Tr ∼ M1∕6

0 . The
temporal evolution of the creep front eroding an asperity is well fit by crack models, allowing us to quantify
the contribution from aseismic slip during different phases of the seismic cycle.

Our models make specific prediction on the seismic behavior of asperities as a function of their dimension
with respect to the nucleation radius R∞. These findings are strictly valid for 0.3 < a∕b < 0.75: in this range,
simulations with the same ratio R∕R∞ exhibit the same behavior. For smaller a∕b, R∞ should be replaced by
1.7Lb, a better estimate of the nucleation half length; while for larger a∕b, we observe similar scalings, but
more variability in rupture style and recurrence interval between cycles. We identify a range of asperities over
which ruptures nucleate from the center (R∞ < R < 2R∞). Even though source models for events below M5
often assume central ruptures (e.g., Boatwright, 2007), we expect this behavior to be relatively rare due to the
narrow range of R∕R∞ that exhibit this rupture style. We also note that the existence of a finite nucleation size
introduces a break in self-similarity, which results in a decrease of stress drop with decreasing R. This effect
leads to the Tr ∼ M1∕6

0 scaling for small asperities.

For larger asperities, the same scaling is not due to variations in stress drop or to aseismic slip but to the
relationship between SIF and radius. In particular, we find that an energy balance argument predicts that full
ruptures are possible at Tfull ∼

√
R, and hence Tr ∼ M1∕6

0 . According to our analysis, this criterion explains
the recurrence interval for asperities above ∼ 4.3R∞. We discuss observational evidence suggesting that the
largest observed repeater (the M4.9 Kamaishi, Japan repeater) falls into this regime.

We show that the scaling across all regimes is to be approximated by Tr =
1.6

√
R∞Δ𝜏5∕6

𝜇′vpl
M1∕6

0 . The dependence

of this expression on the creep rate validates the use of small repeating earthquakes as creepmeters but also
highlights the role of fault properties, which can affect the recurrence interval measured on different faults.

Appendix A: Creep Front Propagation

In order to slip at the loading velocity, the stress behind the crack tip must increase from the residual stress
after an earthquake 𝜏ss(vco) to the steady state value at the creep rate 𝜏ss(vcr). In the simulations, we note that
this is close to the loading rate vpl, and for simplicity here we assume vcr = vpl. The crack can therefore be
approximated by superimposing a stress-free end-driven crack and a crack with a spatially uniform negative
stress drop Δ𝜏 = 𝜏ss(vpl) − 𝜏ss(vco). Neglecting the contribution from fracture energy, the length of the crack
a(t) is determined by the condition that the total SIF vanishes, or

Kl(t, a) = KΔ𝜏 (a) (A1)

where Kl is the SIF due to displacement at a ≥ R, which we assume to grow linearly in time (S = vplt). The prop-
agating creep front can be treated as an annular crack driven by edge displacement, which grows in response
to an increase in the displacement boundary condition (analogous to the 2-D case analyzed by Mavrommatis
et al., 2017). We consider an annular crack with outer radius R and inner radius a(t).

A1. Annular Crack
For simplicity, throughout this work we employ results for SIFs for Mode-I cracks; for Mode-II or Mode-III cracks,
the SIFs vary by a factor of order 1. Closed form solutions for the SIFs for an annular crack with fixed slip at r = R
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are, to our knowledge, not available. Therefore, we estimate them numerically, and validate these solutions
by comparing them to analytical results in the limits: a ≪ R and a → R. Consider an annular crack with inner
and outer radii a and R, subject to an axisymmetric stress 𝜏(r). The SIF can be expressed as

K(t, a) = ∫
R

a
𝜏(t, r)k(r)dr (A2)

where k(r) is the SIF for a unit ring force at radius r. We evaluate k(r) numerically, using the method introduced
by Clements and Ang (1988). The stress distribution relevant for edge loading Kl is

𝜏l(r, t) = 𝜏rd(r)vplt (A3)

where 𝜏rd is the stress due to a unit ring dislocation at r = R (Figure B2), with slip 𝛿(r, t):

𝛿(r, t) =
{

vplt r ≥ R
0 r < R

(A4)

where t is the time since the last event and vpl the plate velocity. The stress field inside a dislocation ring is
given by (Kroupa, 1960):

𝜏rd(r) =
𝜇′vplt

𝜋R
E (𝜌)

1 − 𝜌2
(A5)

where 𝜌 = r∕R and E(k) is the complete elliptic integral of the second kind, which varies from 1 to 𝜋∕2. It can
be verified that this form gives the 1∕x singularity in stress as r → R and reduces to 𝜏rd = 𝜇vplt∕2R at r = 0.
We checked that the numerical solution of Kl(a), approaches known solutions for the two limiting cases: the
result from Selvadurai and Singh (1986) for a ≪ R and the 2-D solution for a → R.

For KΔ𝜏 , we assume a uniform (and negative) stress drop (Figure 5), associated with increase in stress from that
after dynamic rupture to steady state friction for creep at v = vpl, that is, Δ𝜏 = 𝜏ss(vpl) − 𝜏ss(vco). We neglect
the acceleration in slip speed (and hence decrease in KΔ𝜏 ) as the slip front approaches the center (seen in the
last snapshot in Figure 5). We use the approximate solution from Tada et al. (2000):

KΔ𝜏 (l) = Δ𝜏
√

𝜋l
2

⋅ F
( l

R

)
, (A6)

with

F
( l

R

)
=

1 − 0.36l∕R − 0.067(l∕R)2√
1 − l∕R

(A7)

and l = R − a. Using our numerical solution for Kl(t, a) (obtained through equations (A2) and (A5)) and
equation (A6) into equation (A1), we obtain the equation of motion for the creep front a(t) shown in Figure 5.

A1.1. Calculating Tnucl

To get an analytical approximation for the time required for the creep front to reach the center of the asperity,
we consider the limit a∕R ≪ 1. This is an estimate for the nucleation time on asperities with central ruptures.
For Kl , we note that the SIF due to a displacement 𝛿 = S for r ≥ R and 𝛿 = 0 for r ≤ a and zero stress in
between is equivalent to that imposed by the boundary conditions 𝛿 = 0 for r ≥ R and 𝛿 = −S for r ≤ a, since
the second state can be obtained from the first by subtracting a rigid body displacement, which generates no
stresses. The stress field outside a dislocation ring of radius a and strength −S = −vplTnucl is (Kroupa, 1960)

𝜏rd(r) =
𝜇′S
𝜋a

[
K (1∕𝜌)

𝜌
−

𝜌E (1∕𝜌)
𝜌2 − 1

]
(A8)

where 𝜌 = r∕a and K(k) are the complete elliptic integral of the first kind. As 1∕𝜌 → 0, this becomes
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𝜏rd = −
vpl𝜇

′

2a

(a
r

)3
Tnucl (A9)

for r > a. Since we are estimating the time for the creep front to reach the center of the asperity, a(Tnucl) = 0,
we have a∕R ≪ 1 and can approximate the problem as an external crack of radius a. Since the displacements
at r → ∞ for an external crack subject to a field decaying sufficiently rapidly is null, the boundary condition
𝛿(R) = 0 is automatically satisfied in this limit. The SIF for an external crack subject to a stress field of the form
𝜏(r) = 𝜏0(r∕a)−n (as in equation (A9)) is given by Sih (1973), and for n = 3 reduces to

Kl = − 2√
𝜋
𝜏0

√
a = −

vpl𝜇
′√

𝜋a
Tnucl (A10)

The SIF for a constant stress drop (equation (A6)) in the limit a∕R → 0 is given by (Tada et al., 2000)

KΔ𝜏 =
4Δ𝜏R
𝜋3∕2

√
1 − a∕R

a
∼ 4Δ𝜏R

𝜋3∕2
√

a
(A11)

Neglecting fracture energy, we set Kl = KΔ𝜏 and obtain

t0(R) =
4RΔ𝜏
𝜋vpl𝜇

′ (A12)

In the simulations, there is a delay between the arrival of the creep front and the onset of an earthquake;
depending on R, this is of the order of seconds to hours (Figure 1), and thus negligible compared to the
cycle duration. Therefore we take the nucleation time Tnucl equal to t0. We can gain some insight into how
the asperity dimension affects creep front propagation by considering the scaling of Kl and KΔ𝜏 . Rewriting
equation (A10) in terms of the nondimensional length ã = a∕R, we see that Kl ∼ t∕

√
R, a result which, as we

demonstrate in Appendix B is valid for a crack of any shape within the asperity. Similarly, equation (A6) shows
that KΔ𝜏 ∼

√
R. Therefore, neglecting fracture energy and solving Kl = KΔ𝜏 for a given value of ã results in

t ∼ R, so that when both distance and time are normalized by a factor proportional to R, the creep evolution
curves collapse as in Figure 5. Figure 5 also shows that the normalized equation of motion is in agreement
with the equation of motion calculated numerically.

A1.2. Effect of Fracture Energy
We include the effect of fracture energy by finding numerical solutions of

Kl + KΔ𝜏 = Kc (A13)

where Kc is the fracture toughness, which is related to the fracture energy by equation (8). We employ the
fracture energy for the aging law, in the no-healing approximation and constant slip velocity vin, as given by
(Rubin & Ampuero, 2005):

Gc =
dcb𝜎

2

[
log

(
vin𝜃i

dc

)]2

(A14)

Since the crack is propagating into the locked region, we take 𝜃i = t + dc∕vco (from equation (3), with �̇� ∼ 1
and 𝜃(t = 0) = dc∕vco).

A2. An Approximate Solution
Here we derive an analytical form for the equation of motion of the creep front by treating the annular crack
as an external circular crack and approximating the stress field imposed by the ring dislocation at r = R. The
SIF for an external crack of radius a subject to uniform stress between r = a and r = R is (Sih, 1973)

KΔ𝜏 =
2
√

R√
𝜋

√
1 − ã2

ã
Δ𝜏 (A15)

with ã = a∕R. Note that this differs from equation (A11) due to the use of an external crack, as opposed to
an annular crack. Next we approximate Kl as due to a concentrated ring force at r = R, that is, 𝜏(r) = P𝛿(R),
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Figure B1. Example of a rupture propagating within the asperity, as
presented in Rice (1989). The dimensions relevant to the calculation of SIFs
(equation (B2)) are marked.

where P is a constant; 𝛿(x) is the Dirac delta function, so that the ring
force has the same form as the gradient of the imposed displacement
(equation (A4)). This approximation assumes that the SIF is dominated by
the singularity in the stress field; we note that for two-dimensional cracks,
these two loading configurations produce exactly the same SIF (Kl ∼

√
l,

where l is the distance between the loading point and the crack tip). The
SIF in this case is Sih (1973)

Kl =
2P√
𝜋R

1√
ã(1 − ã2)

(A16)

Setting P = 𝛼vplt (so that Kl is proportional to load point displacement),
KΔ𝜏 = Kl gives

a(t) = R

√
1 −

𝛼vplt

R
(A17)

Further choosing 𝛼 = ṙc∕vpl with ṙc = 𝜋𝜇′vpl∕4Δ𝜏 matches the condition
given by equation (A12). This solution, although not rigorous, is close to
the numerical result (Figure 5).

Appendix B: Estimating Tfull(R)
Equation (7) considers the contribution of energy from elastic loading (Kl) as well as stress variations within
the crack (KΔ𝜏 ). In Appendix A, we saw that the propagation of the creep front is controlled by both terms. For
a seismic rupture, the problem can be simplified by noting that we are considering a full seismic cycle, so that
the net stress change is null. At t = 0 (just after a full rupture) the stress in the asperity is low: 𝜏 = 𝜏ss(vco).
Interseismically, creep outside the asperity raises the applied stress, while frictional strength changes as a
result of healing as well as creeping on part of the asperity. These interseismic stress changes are reversed
during seismic rupture, since the stress behind the seismic crack tip is 𝜏 = 𝜏ss(vco). Therefore, we can set
KΔ𝜏 = 0. For this argument to be strictly valid, we should account for stress changes on the asperity due
to interseismic slip outside the hypothetical growing rupture. However, for simplicity, here we neglect the
contribution from interseismic slip and assume that the asperity is entirely locked (a good approximation
for R ≫ R∞).

We estimate the SIF for a rupture nucleating at the edge of an asperity and propagating into the locked region.
For a rupture in two dimensions, the SIF is a function of position along the front and it changes as the rupture
grows. We consider the problem of a crack of an arbitrary shape growing within an asperity.

Rice (1989) developed a theory for calculating SIFs for two-dimensional cracks in a 3-D medium. For a crack
subject to a stress field 𝜎(x), the SIF at position s along the rupture front is given by

Kl(s) = ∫crack
k(x; s)𝜎(x)dA (B1)

with

k(x; s) =
√

2𝜌(x)W(x; s)√
𝜋3D2(x; s)

(B2)

where 𝜌 is the minimum distance between x and the edge of the crack, D the distance between x and point s
along the crack, and W(𝜌,D) a nondimensional factor which takes into account the crack shape (see Figure B1).
The terms k(x; s) are weight functions: they depend on the crack geometry and not on the applied stress. Note
that they are a function of position along the front, and they vary as the rupture grows and potentially changes
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Figure B2. Stress intensity factor for a rupture nucleating on the side. (left) Sequence of elliptical cracks representing an
idealized rupture history. Each ellipse is obtained by shifting the center along the vertical and matching the asperity
curvature at the point of contact. (right) Stress intensity factor and stress field within the asperity. The SIF is calculated at
point P (left panel). The minimum in 𝜙 (0.76) is marked with a circle, and it corresponds to the dotted ellipse in the left
panel.

shape. The applied stress field 𝜎(x) is determined by the loading conditions on the asperity (i.e., interseismic
loading) and is given by equation (A5). We can now write the SIF in terms of nondimensional variables 𝜉 = r∕R,
�̃� ≡ 𝜌∕R and D̃ ≡ D∕R:

Kl(s) =
𝜇′vplt√

R
𝜙(s) (B3)

with

𝜙(s) = ∫
√

2�̃�(x)W(x; s)√
𝜋5D̃(x; s)2

E(𝜉)
1 − 𝜉2

dÃ (B4)

where the integration is over the rescaled crack. Note that this term only depends on normalized lengths. As
the crack grows and changes shape, the quantities �̃�, D̃, and W vary. A rupture stops when Kl(s) < Kc for all
points s, which are still within the velocity-weakening region (or after penetrating a short distance into the VS
region). For easier notation, we drop the dependence on s and we simply write Kl < Kc when referring to this
condition. A first-order scaling between the SIF and the asperity size can be derived by assuming that 𝜙 does
not depend on R. This implies that rupture evolution is independent of asperity dimension, that is, the rupture
history on an asperity is simply a rescaled version of the rupture history on an asperity of a different size. This
can be considered an acceptable first-order approximation given that �̃�, D̃ must always be in the range [0, 2].
By setting equation (B3) equal to Kc we obtain an estimate of the minimum recurrence interval:

Tfull =
Kc

𝜙

√
R

𝜇′vpl
(B5)

and with constant 𝜙 we find a square root scaling between recurrence interval and source dimension.

To estimate realistic values of Tfull(R), we compute 𝜙 numerically for the rupture history shown in Figure B2,
using the values of W(x; s) for an elliptical crack (Wang et al., 1998). In this case K varies along the rupture front.
For the innermost point along the rupture front (P), we note that the 𝜙 has a nonmonotonic behavior as the
rupture dimension grows: as P moves toward the center of the asperity, the stress field near P decreases and
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Figure C1. Slip profile for a stress-free crack with a displacement boundary
condition; the constant stress drop crack which negates the SIF from the
displacement-driven crack; and their combination. The dotted lines are the
slip profiles assuming v = 0 ahead of the crack tip, and v = vcr behind, with
vcr = vpl and vcr = vpl∕2.

so does𝜙(P). Note that the minimum of K occurs before P reaches the cen-
ter of the asperity, since 𝜙(P) does not depend only on the stress at P but
also on the crack size (it increases with crack dimension). The minimum
value of 𝜙 is 0.76.

The behavior of SIF at one point is not enough to determine whether the
rupture stops. However, this simple model shows that ruptures starting
at the edge of an asperity and propagating down a stress gradient may
encounter a minimum SIF as they grow. This may lead to either partial seis-
mic ruptures, or slow slip episodes, depending on whether the minimum
is encountered before or after reaching the critical nucleation dimension.

Appendix C: Slip Budget

The slip deficit at the time of the first nucleation is given by vplTnucl, and
from equation (13) we have

Stot =

{ 4Δ𝜏
𝜋𝜇′

R R < 2R∞
16Δ𝜏
𝜋𝜇′

R∞

(
1 − R∞

R

)
R ≥ 2R∞.

(C1)

In order to calculate the average slip from the propagation of the creep front, we need to know the slip pro-
file for an annular crack analyzed in Appendix A. While there are simple expressions for this problem for 1-D
cracks, there are no closed form solutions for the annular crack. Therefore, we use the following approxima-
tion: points ahead of the creep front do not slip, and points behind it accumulate slip at a constant rate vcr

(which, as discussed earlier, is of the order of vpl). At the time of nucleation, the total slip at a point of radius r
is vcr

(
Tnucl − t(r)

)
, where t(r) is the time when the front reached r. Approximating this time by the inverse of

equation (A17), we obtain

screep(r) =
⎧⎪⎨⎪⎩

4Δ𝜏
𝜋𝜇′

vcr

vpl

r2

R
R < 2R∞

4Δ𝜏
𝜋𝜇′

vcr

vpl

r2−(R−2R∞)2

R
R ≥ 2R∞,

(C2)

We integrate this expression to obtain the average slip on the asperity at the time of nucleation:

Screep =
⎧⎪⎨⎪⎩

2Δ𝜏
𝜋𝜇′

vcr

vpl
R R < 2R∞

32Δ𝜏
𝜋𝜇′

vcr

vpl

R2
∞
R

(
1 − R∞

R

)2
R ≥ 2R∞.

(C3)

To constrain vcr∕vpl, we consider the initial phase of the creep front propagation, when the annulus can be
treated as a 1-D crack. As shown in Figure C1, the average slip within a stress-free crack driven by a slip bound-
ary condition is the same as that of a linear slip profile given by constant slip rate vcr = vpl. However, the
(negative) stress drop crack that cancels the SIF contributes negative slip, equal to half of the average slip for
the stress-free crack. Therefore, we match the correct average slip in the annulus by setting vcr = vpl∕2; vcr

should be thought of as an average slip velocity.

Finally, we consider the slip accumulated during the nucleation phase by treating the nucleating patch as
constant stress drop crack of radius R∞ (cf. section 4). The average slip due to this crack embedded within an
asperity of radius R is given by

Snucl =
16Δ𝜏
7𝜋𝜇′

R3
∞

R2
(C4)

Assuming, as done before, that the stress drops during nucleation and creep propagation have the same
absolute value, Δ𝜏 is the same in equations C1, C3, and C4, and these values differ only by factors containing
R and R∞.
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