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S U M M A R Y
A thorough understanding of time-dependent noise in Global Navigation Satellite System
(GNSS) position time-series is necessary for computing uncertainties in any signals found
in the data. However, estimation of time-correlated noise is a challenging task and is com-
plicated by the difficulty in separating noise from signal, the features of greatest interest in
the time-series. In this paper, we investigate how linear trends affect the estimation of noise
in daily GNSS position time-series. We use synthetic time-series to study the relationship
between linear trends and estimates of time-correlated noise for the six most commonly cited
noise models. We find that the effects of added linear trends, or conversely de-trending, vary
depending on the noise model. The commonly adopted model of random walk (RW), flicker
noise (FN) and white noise (WN) is the most severely affected by de-trending, with estimates
of low-amplitude RW most severely biased. FN plus WN is least affected by adding or re-
moving trends. Non-integer power-law noise estimates are also less affected by de-trending,
but are very sensitive to the addition of trend when the spectral index is less than one. We
derive an analytical relationship between linear trends and the estimated RW variance for the
special case of pure RW noise. Overall, we find that to ascertain the correct noise model for
GNSS position time-series and to estimate the correct noise parameters, it is important to have
independent constraints on the actual trends in the data.
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1 I N T RO D U C T I O N

We are currently in the third decade of continuous Global Navigation
Satellite System (GNSS) recordings of crustal motion. Daily posi-
tion time-series provide highly precise estimates of GNSS velocities
(Prawirodirdjo & Bock 2004; Li et al. 2012; Kierulf et al. 2014;
Mantovani et al. 2015). However, the presence of time-correlated
(or coloured) noise in the time-series complicates these estimates.
First, the estimates of signals, such as linear trends, in the data
can trade-off with estimates of time-correlated noise. Secondly, the
presence of time-correlated noise drastically increases the veloc-
ity uncertainty (Williams 2003; Williams et al. 2004; Langbein
2012), yet these noise parameters can be difficult to estimate ro-
bustly (Langbein 2012; Dmitrieva et al. 2015).

The task of estimating noise becomes easier when the signal is
known. Previously, we developed a network method of analysing
noise in GNSS time-series from intraplate regions, where we can
assume small or well-characterized signals (Dmitrieva et al. 2015).
Rigid plate rotations are generally well-known a priori. In our pre-
vious analysis of data from the North American mid-continent, we
also corrected for trends due to glacial isostatic adjustment (GIA).
We found that the noise estimate for a network of stations was
unchanged after the removal of modeled linear trends due to GIA.
This prompted a further investigation into the effects of linear trends

on the estimates of time-correlated noise, as the trade-off between
noise estimates and trends has been known for some time (Langbein
& Johnson 1997).

From a scientific standpoint, our main interest is in estimating
signals in the GNSS data, such as site velocities or transient signals
on a variety of timescales (Melbourne & Webb 2002; Miyazaki et al.
2003). However, we need to quantify the time-correlated noise in
the data to calculate the uncertainty in the signal. For example,
estimation of a linear trend is more accurate if the noise model
and the amplitudes of the various noise components are accurately
known. Additionally, there is considerable debate about the type
and amount of noise present in GNSS data (Hackl et al. 2011;
Santamarı́a-Gómez et al. 2011; Amiri-Simkooei 2016; Klos et al.
2016), making it difficult to determine the true signal uncertainty. In
order to correctly model noise in the data, we would ideally like to
have strong a priori constraints on any signals present. In this paper,
we focus on understanding the relationship between estimated time-
correlated noise and linear trends in the GNSS time-series.

Time-correlated noise is usually represented by power-law (PL)
forms (Agnew 1992), where noise in the spectral domain is propor-
tional to the inverse of the frequency to a power of n—the spectral
index: p ∼ f−n, where n usually ranges from −1 to 3 (Agnew 1992).
Some well-known cases of the PL representation are: white noise
(WN, n = 0), flicker noise (FN, n = 1) and random walk (RW,

C© The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society. 281

 at Stanford U
niversity on N

ovem
ber 25, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

mailto:dmitrieva@stanford.edu
http://gji.oxfordjournals.org/


282 K. Dmitrieva, P. Segall and A.M. Bradley

n = 2). However, n could be non-integer, in which case it is referred
to as generic PL.

There is no agreement on which noise model is the most repre-
sentative of GNSS time-series. Some argue for a sum of FN and
WN (Williams et al. 2004; Ray et al. 2008), while others suggest
that the sum of RW, FN and WN should be used (Calais et al. 2006;
King & Williams 2009; Amiri-Simkooei 2013; Dmitrieva et al.
2015). Finally, some suggest a sum of PL and WN (Santamarı́a-
Gómez et al. 2011; Devoti et al. 2016; Klos et al. 2016). Moreover,
Langbein (2008) suggests that the optimal model is different for
different stations. It has also been shown that a PL model can be
approximated as a sum of RW and FN (Langbein 2012). In this pa-
per, we explore the above models with synthetic time-series, since
knowledge of the true noise and trend allows us to precisely evaluate
the effects of linear trends on estimation of the noise parameters.
For every noise model and added trend, we perform 100 realiza-
tions and then calculate the mean and the standard deviation of the
estimated noise parameters.

There are various methods to estimate noise in GNSS time-series,
such as spectral estimation (Langbein & Johnson 1997; Zhang et al.
1997; Santamarı́a-Gómez et al. 2011), maximum likelihood estima-
tion (MLE, Langbein & Johnson 1997; Langbein 2004; Williams
et al. 2004), least-squares variance component estimation (Amiri-
Simkooei et al. 2007), applying the Allan variance of the rate to
the time-series (Hackl et al. 2011) and Kalman-filter-based MLE
network noise estimation (Dmitrieva et al. 2015). We previously
showed that when estimating time-correlated noise independently
for individual stations, the time-correlated noise, especially RW, can
be systematically underestimated (Dmitrieva et al. 2015). Estimat-
ing noise parameters for a network of stations simultaneously pro-
vides more robust estimates of the average RW variance (Dmitrieva
et al. 2015), although in this approach we estimate only an aver-
age set of parameters for the entire network. Since in this paper
all data are synthetic, there is no disadvantage to estimating noise
parameters for the network rather than for individual time-series,
as long as all time-series within the network have the same noise
parameters. This way we gain more precision in the estimation of
lowest frequency noise (such as RW or high-exponent PL). In order
to estimate average noise parameters for a network, we modify the
MLE method (Langbein 2004), calculating the likelihood of each
time-series having the given noise covariance, and then maximizing
the sum of these likelihoods, rather than maximizing each individual
likelihood:

2
M∑

i=1

L(x, C) = −
M∑

i=1

[
ln(det(C)) + r t

i C−1ri + N ln(2π )
]
, (1)

where M is the number of time-series in the network, C is the
data covariance matrix, N is the number of observations and ri are
the residuals of the model fit for the ith time-series. To speed up
the likelihood calculation, we use Cholesky factorization of the
covariance matrix (Langbein & Johnson 1997; Bos et al. 2008).

In this paper, we explore the relationship between time-correlated
noise estimates and linear trends in the data. First, we present a theo-
retical derivation of how trends affect the estimate of RW amplitude
in case of a simple pure RW noise model. Then we look at how
adding linear trends to various noise models affects the estimates
of those noise parameters. We also explore how noise could be per-
ceived as trend and how removing an apparent linear trend affects
the noise estimates. Finally, we estimate noise and trend simultane-
ously and compare the results to previous tests. The main goal of

this paper is to develop an understanding of how noise estimates are
affected by linear trends.

2 T H E O R E T I C A L R E L AT I O N S H I P S
B E T W E E N T R E N D A N D R A N D O M
WA L K VA R I A N C E

In this section, we develop a theoretical relationship between trend
and the estimated RW variance for the case of pure RW, and show
how the estimate of RW scale changes with the addition or sub-
traction of a linear trend. This case is tractable because the first
difference of an RW is simply WN.

Let zi be an RW, where i = 0, . . . , n is the epoch. If the period
between two epochs �t is constant, then ti = i�t and tn ≡ T = n�t.
A discrete RW process with variance τ 2t is a cumulative sum of
WN: zi = τ

√
�t

∑i
j=1 r j , where τ is the RW scale parameter with

units of mm yr−0.5 and r is a random vector with zero mean and unit
variance. The difference of the series z is WN: zi − zi−1 = τ

√
�t ri .

In the following, let Diff(·) denote the vector of first differences.
The expectation of the mean of the differences is 0 because the
difference vector Diff(z) is proportional to r. Thus, the variance of
the differences is

var[Diff(z)] = E

[
1

n

n∑
i=1

(zi − zi−1)2

]
= τ 2�t, (2)

where E denotes expected value. We obtain the simple estimator

τ̂ 2(z) ≡ 1

n�t

n∑
i=1

(zi − zi−1)2,= 1

T

n∑
i=1

(zi − zi−1)2, (3)

whose expectation for RW z is E[τ̂ 2(z)] = τ 2. Simply put, the esti-
mate of the RW scale parameter is proportional to the variance of
the difference series.

We now apply this estimator to the time-series yi ≡ y(ti) = sti + zi,
which is a sum of RW z and linear trend st with slope s. The time-
series first difference is Diff(y) = τ

√
�t r + s�t ; that is WN with

non-zero mean. The expectation of the estimator with this input is
thus

E[τ̂ 2(y)] = 1

�t
[τ 2�t + s2�t2] = τ 2 + s2�t. (4)

Eq. (4) gives the relationship between the estimated scale parameter
for RW and the trend in the data. Surprisingly, the estimate depends
on the sampling interval. This can be understood as follows. In
the limit of very sparse sampling, it is hard to distinguish between
RW and a trend. With finer sampling, RW and trend become more
distinct.

In the preceding analysis, the linear trend is independent of the
RW, and the expectation of the estimator τ̂ increases. De-trending
has the opposite effect. De-trending adds a linear trend that is cor-
related with the RW. The expectation of τ̂ decreases. This can be
understood by a derivation similar to that in eq. (4) for simple
de-trending procedures. For example, suppose a linear trend is re-
moved such that a time-series yi starts and ends at 0. Then, the slope
s = −zn/T (the MLE for pure RW errors), and thus yi = zi − znti/T.
Proceeding as before, we construct the first difference Diff(y):

yi − yi−1 = τ
√

�tri − zn

T
�t = τ

√
�t

[
ri −

∑n
j=1 r j

T
�t

]

= τ
√

�t

⎡
⎣(

1 − �t

T

)
ri − �t

T

n∑
j=1, j �=i

r j

⎤
⎦ . (5)
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Then, the expectation of the estimator is

E[τ̂ 2] = 1

T
E

[
n∑

i=1

(yi − yi−1)2

]

= τ 2�t

n�t

n∑
i=1

E

⎡
⎣(

1 − �t

T

)
ri − �t

T

n∑
j=1, j �=i

r j

⎤
⎦

2

= τ 2

n

n∑
i=1

⎡
⎣(

1 − �t

T

)2

E[r 2
i ] +

(
�t

T

)2 n∑
j=1, j �=i

E[r 2
j ]

⎤
⎦ .

(6)

In the second line, we used T = n�t. In the third line, we used
E[rirj] = 0 when i �= j to remove all terms in rirj, i �= j. Now we use
E[r 2

i ] = 1 to finish:

E[τ̂ 2] = τ 2

n

n∑
i=1

[(
1 − �t

T

)2

+
(

�t

T

)2

(n − 1)

]

= τ 2

[(
1 − �t

T

)2

+
(

�t

T

)2

(n − 1)

]

=
(

1 − �t

T

)
τ 2, (7)

where we have again made use of n�t = T to obtain the last line.
Eq. (7) should be compared with eq. (4). In eq. (4), there is a
term s2�t in addition to τ 2; in eq. (7), there is instead a term
−τ 2�t/T. This makes sense in that the slope removed to obtain (7)
is s = −zn/T, but zn ∼ τ

√
T so that s = −τ/

√
T . Again, while the

bias is small for pure RW, we show that it can be considerably larger
when FN and WN are present.

While it is possible to derive an analytical expression for pure
RW, when any other noise component is added to the noise model
it appears not to be possible to derive closed-form expressions for
the expected value of the noise parameter. Instead, we explore the
effects of linear trends on the estimates in the next section using
synthetic data.

3 E M P I R I C A L R E L AT I O N S H I P
B E T W E E N T R E N D S A N D N O I S E
E S T I M AT E S

In this section we perform tests of more realistic noise scenarios for
GNSS position time-series. We use synthetically generated time-
series consisting of a sum of time-correlated and WN. Since there
is no general agreement on which noise model is the most appro-
priate for GNSS time-series, we consider three commonly used
noise models, as discussed in the Introduction. The inferred noise
parameters depend on the topocentric components analysed, with
horizontal components of GNSS positions being more precise than
the vertical. We explore a range of noise amplitudes based on es-
timates reported in the literature. The first model we consider is a
sum of RW, FN (4 mm yr−0.25) and WN (1 mm), with three RW
amplitudes: 1, 0.5 and 0.1 mm yr−0.5. Secondly, we consider a sum
of PL (amplitude of 3 mm yr−0.25n and two different spectral indices
n = 1.4, which lies between RW and FN, and n = 0.3, which lies
between FN and WN) and WN (1 mm). Finally, we consider a sum
of FN of 4 mm yr−0.25 and WN of 1 mm.

First, we investigate how adding various linear trends affects the
estimated time-correlated noise. For each scenario, we generate a

network of four time-series each with 10 yr of daily data, fixed
noise and different linear trends varying from 0 to 1 mm yr−1 with
an increment of 0.1 mm yr−1. Then, we estimate noise parameters
assuming no trend, and compare the means and standard deviations
of the estimates (Fig. 1). The top panel shows the mean and standard
deviation of the estimates of the RW scale parameter for the RW
+ FN + WN model. As expected smaller amplitudes of RW are
most affected by the addition of a linear trend. When RW is high
(1 mm yr−0.5), the mean estimate of RW amplitude exceeds the true
value by one standard deviation when linear trend is 0.52 mm yr−1

(dashed line) and exceeds the true value by 10 per cent (1.1 mm
yr−0.5) when the linear trend exceeds 0.63 mm yr−1. For RW of
0.5 mm yr−0.5, the mean estimate exceeds the true value by one
standard deviation when the trend exceeds 0.27 mm yr−1 (dashed
line) and exceeds the true value by 10 per cent (0.55 mm yr−0.5) once
the linear trend is 0.34 mm yr−1. In the case of low RW of 0.1 mm
yr−0.5, adding even 0.13 mm yr−1 of trend causes the mean to exceed
the true value by one standard deviation. In summary, when the RW
variance is large moderate trends do not significantly affect the RW
amplitude estimate, while low-level RW can be strongly influenced
by the presence of a trend in the data. Note also that the mean of the
RW estimates in all three cases approaches a common value when
the trends exceed ∼1 mm yr−1, suggesting that for sufficiently large
trend the site velocity dominates the estimated RW. We do not show
the corresponding FN or WN estimates, as they are not greatly
affected by the addition of linear trends for the range of parameters
tested.

The second panel of Fig. 1 shows the means and standard devi-
ations of the spectral index n for the PL + WN noise model. We
consider two cases, first, the PL + WN model with high spectral
index n = 1.4 and then with very low index n = 0.3. We estimate
both the spectral index and the amplitude of the PL component, but
only show the estimates of n, since it is significantly more affected
by the added trend. Fig. 1 shows that adding a linear trend affects
noise with n = 0.3 much more than noise with n = 1.4. For n = 1.4,
the mean of the estimate exceeds the true value by one standard
deviation once the linear trend is 0.37 mm yr−1 (dashed line) and
it exceeds the true n by over 10 per cent only for trends exceeding
1 mm yr−1. For n = 0.3, adding even 0.1 mm yr−1 of trend causes
the mean estimated n to exceed the true value by over 50 per cent.
As with the RW + FN + WN model, the estimate of the spectral
index for the case when n = 0.3 converges to a higher value when
a sufficiently large trend is added.

The bottom panel of Fig. 1 shows how the presence of a linear
trend affects the estimates of FN amplitude in a FN + WN model.
We find that even with a 1 mm yr−1 trend, the mean estimate still
does not exceed 10 per cent of the true FN amplitude. The mean of
the FN amplitude estimate exceeds the true value by one standard
deviation when the linear trend is 0.4 mm yr−1 (dashed line), but
in this case this results mainly from the small standard deviation
in the estimate (there are fewer parameters estimated compared to
previous models).

We next consider how de-trending affects the estimates of noise
parameters. This is important because long-period noise could be
interpreted as a trend. Using synthetic data, we calculate a mean
of the absolute values of the estimated apparent trend for all six
noise scenarios explored in this paper. We emphasize that for these
estimates the time-series consisted only of noise with no trend. The
results for 10 yr of daily positions time-series are shown in Table 1.
The calculations show that a significant trend could be estimated
when there is in fact no underlying linear signal. The apparent
linear trend is greater for models with noise with higher spectral
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Figure 1. Changes in estimated noise parameters due to the presence of a
linear trend in the data. For each combination, we create four time-series
containing the same amount of noise sampled daily for 10 yr. A linear trend
is added, with values ranging from 0 to 1 mm yr−1, with an increment of
0.1 mm yr−1. The estimated noise parameters are shown assuming that the
data contain noise only. Each combination of noise model, noise ampli-
tude and trend, is repeated 100 times. The mean (thick lines) and standard
deviation (thin lines) of the estimates are shown. Top: the noise model is
RW + FN + WN, the true RW is 1 mm yr−0.5 for the purple curves, 0.5 mm
yr−0.5 for the green curves and 0.1 mm yr−0.5 for the pink curves. Middle:
PL (3 mm yr−0.25n amplitude and spectral index n = 1.4 (blue) and n = 0.3
(green)) + WN model. Bottom: FN (4 mm yr−0.25) + WN. The dashed
lines show where the mean of the estimates exceeds the true value by one
standard deviation.

Table 1. Average (over 1000 estimations for each value) of absolute value
of estimated linear trend in the synthetic time-series (10 yr of daily data)
that consist only of noise.

Noise model
Mean trend
(mm yr−1)

RW(1 mm yr−0.5) + FN(4 mm yr−0.25)+WN(1 mm) 0.30
RW(0.5 mm yr−0.25) + FN(4 mm yr−0.25)+WN(1 mm) 0.18
RW(0.1 mm yr−0.25) + FN(4 mm yr−0.25)+WN(1 mm) 0.12
PL(n=1.4, 3 mm yr−0.075) + WN(1 mm) 0.21
PL(n=0.3, 3 mm yr−0.35) + WN(1 mm) 0.02
FN(4 mm yr−0.25) + WN(1 mm) 0.11

Figure 2. Effects of de-trending on noise estimates (RW + FN + WN
model). Synthetic time-series contain RW + FN + WN (all panels have the
same FN 4 mm yr−0.25 and WN 1 mm), RW from top: 1 mm yr−0.5, mid
and bottom: 0.5 mm yr−0.5. The apparent trend is subtracted and then noise
parameters are estimated. Histograms show the distribution of estimated
RW amplitude for 100 trials. Blue: original, green: de-trended (intercept
and slope removed) and red: de-trended (just the slope removed).

indices, such as RW and high n PL, but is still present for FN +
WN. This emphasizes how time-correlated noise affects both the
velocity estimate as well as the uncertainty in that estimate.

We again use synthetic tests to explore the impact of de-trending
on estimates of time-correlated noise parameters. For each scenario,
we generate a network of four time-series with 10 yr of daily data,
fixed noise parameters, but with no linear trend. We use linear least
squares with the appropriate data covariance to estimate and remove
apparent trends, then estimate noise parameters from the residuals.

For the RW + FN + WN model (Fig. 2), in the case of high
RW (1 mm yr−0.5) removing a linear fit significantly biases the RW
estimate. One-third of the tests have zero estimated RW amplitude,
while the remaining two-thirds have non-zero estimates but are still
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Table 2. Velocity uncertainty with the RW + FN + WN model, where FN
is 4 mm yr−0.25, WN is 1 mm and RW amplitude as shown in the table.

Random walk, mm yr−0.5 1.4 1.0 0.5 0.1 0
Velocity uncertainty, mm yr−1 0.5 0.35 0.21 0.13 0.13

biased to low values. For moderate RW (0.5 mm yr−0.5), 90 per cent
of the estimated scale parameters are zero following trend removal.
The mean estimate of RW amplitude is only 0.06 mm yr−0.5. Ini-
tially, we estimate and remove both the slope and the intercept of
the linear trend, since this is more conventional. However, we found
that removing just the slope produces a different result (Fig. 2, bot-
tom panel). Subtracting the admittedly small intercept brings the
estimate of RW down. Even when we remove just the apparent
trend (without the intercept), the RW amplitude is underestimated,
the mean estimate of RW is now 0.2 mm yr−0.5 and almost a half
of the estimates are now at 0 mm yr−0.5 (the true value is 0.5 mm
yr−0.5). Thus, for the RW + FN + WN model, removing an apparent
linear trend leads to a significant underestimation of the RW ampli-
tude. This bias leads to an underestimation of velocity uncertainty
(Table 2). We do not show estimates of FN and WN amplitudes as
they are not strongly affected by de-trending for this noise model.

For the case of PL + WN model (Fig. 3), for both low and high
spectral index, n is just slightly underestimated after removal of a
fitted trend. For n = 1.4, the mean estimate before de-trending is
1.40, while it is 1.38 after de-trending. For n = 0.3 prior to de-
trending, the mean estimate is 0.30 and n = 0.28 after the trend is
removed. There is no change in the estimate of the amplitude of
the PL or WN amplitudes for the PL + WN model. For FN + WN
model (Fig. 4), there is almost no change in the FN estimate. Before
de-trending the mean estimate is 4.00 mm yr−0.25 and it is 3.98 mm
yr−0.25 after de-trending.

Finally, we test a common approach of estimating noise and lin-
ear trend simultaneously. For this, we estimate noise parameters and
linear trend by maximizing the likelihood for individual time-series.
We focus on WN + FN + RW, as previous tests showed RW esti-
mates are most influenced by trends. Given that the assumed noise
and trend model correctly describe the synthetic data, it is not sur-
prising that on average the trend is correctly estimated in both high
(1 mm yr−0.5) and low (0.1 mm yr−0.5) RW cases. For the high RW
case, 30–40 per cent of RW estimates are zero, while the rest are dis-
tributed around the true value. In the low RW case, 90-95 per cent of
RW estimates are zero, with the rest significantly higher than the true
RW value. The RW variance estimates are generally uncorrelated
with the trend estimates. FN and WN estimates are unbiased in all
cases. This is consistent with the results of Dmitrieva et al. (2015)
who showed that single time-series estimates tend to be biased to
low values of RW.

4 D I S C U S S I O N

To better understand the dependence of the noise estimate on the
linear trend consider the power spectra plotted in Fig. 5, which shows
theoretical noise components: RW, FN, WN, their sum and a linear
trend. At high frequencies, the noise is mainly affected by WN, in
the mid-frequencies FN is dominant, while RW only dominates for
a limited band-width at the lowest frequencies. Fig. 5 also shows
that a finite linear trend has a slope of −2, as does RW. (Although
both trend and RW have the same slope in the amplitude domain
the phasing is very different, which is clear in the time domain).
With realistic amounts of FN and WN, RW only dominates at the

Figure 3. Effects of de-trending on noise estimates (PL + WN model).
Synthetic time-series contain PL 3 mm yr−0.5n with n = 1.4 (top) and n = 0.3
(bottom) and WN 1 mm. The apparent trend is subtracted and then noise
parameters are estimated. Here, we show histograms of the distribution of
PL spectral index estimates for 100 trials. Red: original and blue: de-trended.

lowest frequencies, making it harder to estimate and more likely to
trade-off with trend.

To test this, we compared the effects of adding a linear trend to
the RW + FN + WN model for typical and very low amplitude FN.
Based on the spectral plots, we expect that with very low FN the
added trend would lead to a smaller bias in the RW estimate. Indeed,
Fig. 6 shows that with the very low FN adding 1 mm yr−1 linear
trend increases the RW estimate by only ∼50 per cent, whereas with
typical FN amplitude, the RW estimate is biased by ∼260 per cent
of the true value.

Perhaps a counterintuitive result is that for pure RW noise: the
sampling frequency determines how much a trend biases the noise
estimate (eq. 4). Perhaps some insight can be gained by considering
the limiting case of two data points at the beginning and end of the
time-series. In this limit, the RW time-series is indistinguishable
from a linear trend. As the sampling interval decreases, the differ-
ence time-series for RW approaches a fixed distribution (in this case
Gaussian WN with zero mean), whereas the difference series for
the trend plus RW is WN with non-zero mean, s�t. Thus, an ML
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Figure 4. Effects of de-trending on noise estimates (FN + WN model).
Synthetic time-series contain FN 4 mm yr−0.25 and WN 1 mm. The apparent
trend is subtracted and then noise parameters are estimated. Here, we show
histograms of the distribution of FN amplitude estimates for 100 trials. Red:
original and blue: de-trended.

Figure 5. Power spectra showing the relationship between various noise
components and a linear trend. Theoretical slope for 1 mm yr−0.5 RW
(black), 4 mm yr−0.25 FN (green) and 1 mm WN (grey). The blue line is a
sum of RW, FN and WN. The red line is a power spectrum of 10 yr of daily
data with slope of 3.8 mm yr−1. We zero-padded the linear trend time-series
to avoid artefacts due to the finiteness of the slope.

estimator can better differentiate trend from RW with more data
points, even though their amplitude spectra are similar.

Our simulations show that time-correlated noise can be incor-
rectly perceived as a linear trend. Removing this apparent, but non-
existent, trend may bias the noise estimate to low values; RW noise
is especially sensitive to de-trending. For the RW + FN + WN
model, de-trending can significantly decrease estimates of RW am-
plitude. Removing a linear trend also decreases the estimate of the
spectral index for PL + WN model, but to a lesser extent. Removal
of an apparent trend does not affect the estimate of FN for the FN
+ WN model, in part because of the difference in spectral slope
between the trend (−2) and FN (−1). In contrast to the PL model,
the spectral index is fixed when estimating noise parameters for the
FN + WN model.

Figure 6. Comparison of the effects of added linear trend on RW estimates,
for RW + FN + WN with typical FN (4 mm yr−0.25, in blue) and very low
(0.1 mm yr−0.25, in red). For both cases, RW is 0.5 mm yr−0.5 and WN is
1 mm. Thick lines indicate the mean of 100 estimates and thinner lines are
one standard deviation. Black line shows true RW.

For the RW + FN + WN model, de-trending can result in very low
and even null estimates of RW, even when the true RW amplitude is
significant. In the first two tests, here we maximized the sum of the
likelihoods from multiple time-series. We have previously shown
that network approaches are more precise at estimating low levels
of RW (Dmitrieva et al. 2015). When maximizing the likelihood for
each time-series, as typically done, de-trending is even more likely
to result in null estimates of RW. We conclude that de-trending the
data can lead to biased or even vanishing RW estimates. At the
same time, accurately estimating weak RW is difficult in the pres-
ence of trends. The estimated RW amplitudes can be significantly
larger than the true values, when unaccounted for trends are present.
Hence, one has to be very careful about de-trending the time-series,
since this could lead to either completely neglecting or significantly
overestimating the RW variance.

The FN + WN model is insensitive to both moderate linear
trends as well as to de-trending. With strong a priori knowledge that
FN + WN is the correct noise model, one could be somewhat liberal
with removing trends. The same holds for the PL + WN model, as
we observe that de-trending only weakly biases estimates of the
spectral index. For PL indices that lie between RW and FN, such as
n = 1.4, adding even moderate trends does not have a significant
effect on the estimate of the spectral index. However, for PL noise
with lower spectral index, such as n = 0.3, even a very small (e.g.
0.05 mm yr−1) trend has a significant effect on the estimate of the
spectral index. Removing a linear trend for low index PL noise does
not affect the estimate of the index. Hence, if one is confident in the
PL + WN model and MLEs of spectral index are low, it is fair to
assume that those estimates are accurate. However, higher spectral
index estimates could be due to (1) the index actually being high,
(2) a residual linear trend or (3) PL + WN not being the correct
model to use.

We do emphasize, however, that there is independent evidence
that GNSS monument motion contributes RW to geodetic time-
series (Wyatt 1989; Johnson & Agnew 1995). We have shown that
de-trending prior to noise estimation or estimation noise for individ-
ual time-series can lead to null estimates of RW. This can potentially
leads to the erroneous conclusion that a simpler FN + WN model,
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that requires only two parameters to estimate. The best solution to
this problem may be to analyse data from areas where there are a
priori constraints on trends in the data, as discussed below. In order
to ensure that RW is not missed, we recommend using an approach
where noise parameters are estimated simultaneously for a group
of stations. Analysing time-series in these areas can allow us to de-
termine average noise models to describe GNSS time-series. Such
areas could be the interiors of plates far from plate-boundary defor-
mation, and also far from large GIA signals, or where such effects
are well modeled. As noted in the Introduction, preliminary work
in the North American mid-continent found that removing GIA ve-
locities barely influenced estimates of noise parameters (Dmitrieva
et al. 2015). In that case, the average GIA signals for the horizon-
tal time-series were low, with a mean of 0.28 mm yr−1, and the
estimated RW was relatively high, 1 mm yr−0.5.

One could reasonably argue that estimating noise parameters si-
multaneously with the linear trends is the correct approach. We
tested that treating each time-series individually. The results show
that trend estimates are close to the true values, however RW is often
underestimated, especially with low-amplitude RW. Dmitrieva et al.
(2015) adopt the philosophy that local, non-tectonic trends in data
should be treated as noise for the purposes of tectonic studies. In
these studies, one is primarily interested in deformations that are
spatially coherent over length scales appropriate to the processes
under consideration. For GIA, the length scales are much longer
than the lithospheric thickness, for tectontic studies the appropriate
length scales are typically longer than the crustal thickness. Local
trends possibly resulting from geomorphic processes (e.g. slump-
ing), localized fluid withdrawal or injection, can contaminate these
long-wavelength signals, especially if the GNSS stations were not
installed for such applications. Simultaneously estimating a noise
model and trend at each site independently may indeed provide a
better measure of the intrinsic accuracy of the GNSS system, how-
ever a more conservative approach, useful for modeling studies is
to treat trends of unknown origin as noise. Thus, we advocate re-
moving only trends due to known processes such as plate motion for
cites well removed from plate boundaries, and GIA motions, when
they are not the focus of study. Of course there is some uncertainty
in our knowledge of these trends that should be propagated through
to the noise estimates.

5 C O N C LU S I O N S

When a small-to-moderate linear trend is added to a pure RW time-
series with daily sampling, the effects of the trend on the estimates of
RW variance are small. However, for more realistic noise models, the
results vary significantly depending on the noise model, and whether
the trend is estimated simultaneously with the noise parameters. In
the presence of WN and FN, RW is both very sensitive to prior de-
trending as well as unmodeled residual trends. It can be difficult to
either confirm or reject the presence of (especially weak) RW in the
data without a priori constraints on the signal trend. Additionally,
when estimated for individual time-series RW estimates are often
biased to zero.

Both FN + WN and PL + WN (with the PL spectral index
1 < n < 2) models are relatively insensitive to de-trending. However,
for the PL + WN model with lower spectral indices 0 < n < 1, an
added trend drastically increases the estimate of the spectral index.

In order to know the uncertainties of the estimated linear trends,
we need to know the time-correlated noise model and variances.
At the same time, estimates of time-correlated noise depend on

knowledge of any linear trends present in the data. To determine the
best noise model and conservative variances in the GNSS position
time-series for tectonic studies, we recommend focusing on areas
where trends are either very small or well-known a priori, and only
removing these known signals. This approach may lead to conser-
vative estimates of the GNSS system noise, but at least partially
accounts for the possible presence of non-tectonic signals is actual
time-series. In addition, we suggest that analysing data from groups
of stations will provide more robust estimates of RW variance.
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