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Abstract An outstanding question for predicting hazard from induced seismicity is
what controls the size distribution of events. For injection-induced seismicity, ruptures
may be confined to the region of perturbed stress and pore pressure when the back-
ground ratio of shear to normal stress is low. We explore the distribution of earthquake
magnitudes under the restrictive assumption that no events occur outside the stress-
perturbed region around the injector. We derive mathematical expressions for the
instantaneous distribution of earthquake magnitudes given a volume-averaged seis-
micity rate, growth rate of the perturbed region, and background fault-size distribu-
tion, assuming the latter follows a truncated Gutenberg–Richter distribution (GRD).
The distribution of magnitudes can be written as the sum of three terms: faults fully
inside the region, partially inside, and faults fully covering the region. The predicted
frequency–magnitude distribution shows time-dependent changes relative to the
GRD. These depend on the ratio of largest fault size to the (time-dependent) radius
of the perturbed region and the b-value. The largest magnitude event is the smaller of
either the perturbed region or largest fault size present, and in some simulations is
observed post shut-in due to the high rate of events just after shut-in coupled with the
continued growth of the perturbed region.

Introduction

Induced and triggered seismicity has been a growing
problem in the central United States in recent years. This
provides both challenges and opportunities to learn about the
nature of earthquakes. From a hazards perspective, an impor-
tant goal is to forecast the rate, magnitudes, and spatial
distribution of induced earthquakes for a given injection sce-
nario (e.g., Király-Proag et al., 2016). Several studies have
previously modeled the number of events induced by injec-
tion (e.g., Deichmann and Giardini, 2009; Bachmann et al.,
2011; Hakimhashemi et al., 2014; Dieterich et al., 2015;
Segall and Lu, 2015). Estimating the hazard from induced
earthquakes requires knowledge of the rate of earthquake
activity and the frequency–magnitude distribution (FMD)
of induced events, as well as the rate at which shaking decays
with distance from the sources (via ground-motion predic-
tion equations) (e.g., Atkinson et al., 2015).

A central question in the study of injection-induced seis-
micity is whether the rupture length and hence magnitude of
triggered earthquakes is in some way restricted by the injec-
tion process, or is solely determined by geologic factors such
as the size of faults and the distribution of tectonic stress.
Specifically, will an induced earthquake be restricted to the
region around the injector with relatively high pore pressure?
Alternatively, will an earthquake once induced rupture and
grow in the same manner as natural earthquakes? Some stud-
ies suggested that the largest earthquake magnitude is con-
trolled in some way by the volume of injected fluid (e.g.,

Baisch et al., 2010; Shapiro et al., 2011, 2013; McGarr,
2014; Dieterich et al., 2015). In contrast, van der Elst et al.
(2016) argue that the volume of injection controls the total
number of events, whereas the largest magnitude is that ex-
pected from the Gutenberg–Richter distribution (GRD) given
the observed earthquake rate. Resolving this issue and more
generally understanding the factors that control the FMD of
triggered earthquakes is an important challenge in induced
seismicity.

Relative to this question, a number of numerical earth-
quake rupture simulations show that once nucleated, the
extent of rupture depends on local stress heterogeneity, fault
geometry, and critically, the ratio of the average background
shear to effective normal stress (e.g., Fang and Dunham,
2013; Dieterich et al., 2015; Schmitt et al., 2015). When the
shear to effective normal stress ratio is sufficiently high, rup-
tures are self-sustaining (i.e., limited only by the size of the
fault), whereas for lower ratios, ruptures may self-arrest after
propagating some distance (Dunham et al., 2011; Fang and
Dunham, 2013; Schmitt et al., 2015). For low-stress environ-
ments, it is likely that induced earthquakes are limited by the
volume of crust perturbed by injection, in contrast to high-
stress environments where triggered earthquakes are likely to
be limited by the same factors that control the size distribu-
tion of natural earthquakes (see also Shapiro, 2015,
section 5.2.7). The simulations of Dieterich et al. (2015) are
consistent with this behavior, showing a tendency for
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ruptures to arrest where the perturbing pore-pressure drops
below a threshold that depends on the background shear
stress level. In this study, we explore analytically the hypoth-
esis that induced ruptures are restricted to a stress and pore-
pressure-perturbed volume of crust, as might be appropriate
in a low shear stress environment, using an analytical ap-
proach. We adopt a highly idealized, end-member model of
injection and the perturbed stress volume to permit analytical
solutions. In this simplification, earthquakes cannot nucleate
or rupture outside the stress-perturbed region, which we take
to be spherical with radius that grows with time due to pore-
pressure and poroelastic stress diffusion. We derive expres-
sions for the time-dependent FMDs that result from this
scenario and consider whether it is possible to distinguish
between these and the GRD.

It should be emphasized that this is a highly idealized
end-member model that cannot capture all of the effects that
come into play during injection and earthquake nucleation,
propagation, and arrest. However, we find interesting and
even unexpected results that should be informative for under-
standing more realistic and complex models. The restriction
of seismicity to a region around the injector alters the relative
proportions of small- to large-magnitude events in different
ways at different times during the injection sequence. We
anticipate this model could be used to inform more detailed
studies of earthquake magnitudes occurring in injection-
induced sequences.

Model and Methods

Background

Segall–Lu 2015 Model. This study builds on the work of
Segall and Lu (2015), who considered an idealized model
of a point source of injection in a poroelastic full space. They
employed the seismicity rate model of Dieterich (1994) to
relate changes in Coulomb stress to the rate of earthquake
nucleations, assuming that a uniform tectonic loading would
result in a constant rate of events. Because the Dieterich
(1994) theory does not predict magnitude, they developed a
simple end-member conceptual model to determine earth-
quake magnitudes. Faults were assumed to be circular cracks
of constant strike and dip, and spatially uniform density. The
rate of nucleations, which could occur anywhere inside the
perturbed region, was provided by the Dietrich model given
the poroelastic changes in stress and pore pressure. They as-
sumed that at some distance proportional to

������
Dt

p
, in which D

is hydraulic diffusivity, the background shear stress was too
low for ruptures to propagate outside of the perturbed volume.

Considering crack-like sources with radius ρ, Segall and
Lu (2015) write the rate of magnitudeMw events R�Mw; t� as

EQ-TARGET;temp:intralink-;df1;55;133R�Mw; t� � �R�t�G�ρ�Mw�; b�Pin�ρ�Mw�; t�; �1�
in which �R�t� is the volume-integrated rate of earthquake
nucleations, G�ρ; b� is the probability that a nucleation
occurs on a fault of size ρ, corresponding to magnitude

Mw (assumed to follow the GRD, with b-value b), and Pin

describes the probability that a source with radius ρ is com-
pletely contained within the perturbed region, given that it
intersects the region.

Their simple model is based on the following
assumptions:

1. The radius of the injection-perturbed region, assumed
spherical with volume V, grows proportionally to

�����
ct

p
.

2. The fault-size distribution is such that, absent perturba-
tions due to injection, tectonic loading would result in
a GRD of event magnitudes.

3. Earthquake nucleations are limited to the perturbed
volume V around the injector.

4. Earthquakes, once they nucleate, rupture the entire fault.
5. The background shear-to-normal stress ratio is low such

that ruptures can only occur inside V.
6. As a consequence of the previous two assumptions, only

faults located fully inside the stress-perturbed region host
earthquakes.

The last assumption implies that the probability of a
nucleation evolving into a magnitude Mw event is indepen-
dent of location as long as the source is fully contained
within the perturbed zone.

Shapiro et al. Model. Our study also relates to work by
Shapiro and others (Shapiro et al., 2011, 2013; Shapiro,
2015, we refer to this set of publications collectively as “Sha-
piro et al.”). They adopt the first four assumptions listed
above, although not in the context of low background stress.
They provide a basis for thinking of the perturbed region as a
finite volume, even though the pore pressure smoothly
decays with distance from the injector. They assume a mini-
mum stress perturbation is needed to initiate failure, and thus
the size of the perturbed volume is given by the point at
which the pore pressure reaches this minimum threshold for
nucleation.

Shapiro et al. consider how the finiteness of the
perturbed region affects the distribution of earthquake mag-
nitudes. The approach is to assume that nucleations are lim-
ited to the stress-perturbed volume, but that once nucleated,
earthquakes rupture the entire fault. They write the size dis-
tribution of events as a factor modifying the GRD to account
for the influence of the perturbed region

EQ-TARGET;temp:intralink-;df2;313;205Pevent�ρ� � Gstim�ρ�G�ρ; b�; �2�

in which Gstim (Gw�X� in Shapiro, 2015) is a factor (not a
probability; see the Appendix) that describes whether or not
a fault intersecting the perturbed region is sufficiently stimu-
lated to produce an event. Shapiro et al. write this as

EQ-TARGET;temp:intralink-;;313;124 Gstim�ρ� � Ps�ρ�=Pc�ρ�:

Pc�ρ� is the conditional probability that the center of a fault
(with radius ρ) is inside the perturbed region V, given that the
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fault at least intersects V. Under these assumptions, G�ρ; b�
applies to fault centers. Thus, G�ρ; b�=Pc�ρ� (for ρ > 0) is
proportional to the probability distribution of fault sizes ρ
intersecting the perturbed region.

Ps is the probability that the fault is sufficiently stimu-
lated to produce an event. Shapiro et al. suggest two
end-member models that bound this probability. The first is
that faults must be fully contained inside the perturbed region
to host an event, as in Segall and Lu (2015). Under this con-
dition, Ps � PvolPc, in which Pvol is the probability that a
fault is fully contained within V, conditioned on its center
being inside V. This results in Gstim � Pvol and

EQ-TARGET;temp:intralink-;df3;55;589Pevent�ρ� � Pvol�ρ�G�ρ�: �3�

The expressions given by Shapiro et al. to compute
Ps � PvolPc are identical within a normalizing constant to
Segall and Lu (2015) (see equation 5.52 with 5.91 in
Shapiro, 2015; or equation 2 in Shapiro et al., 2011, with
equation A7 in Shapiro et al., 2013, compare to Segall
and Lu, 2015, equation C2) and equation (20) in this study.
This is not necessarily expected because Shapiro et al. derive
their model for arbitrary fault orientations. In addition, their
formulation appears to conflict with that of Segall and Lu
(2015), because equation (3) is not the same as Pin given by
Segall and Lu (2015). The difference may be understood by
noting that multiplying Pvol by Pc scales the probability, so
that in the limit that the event size goes to zero, the proba-
bility goes to one, and in the limit as the event size goes to the
maximum, corresponding to a�t�, the probability approaches
zero. Dividing Ps by Pc simply rescales the probabilities.
Thus, the two formulations are consistent.

In the second end-member model considered by Shapiro
et al., any fault with even an infinitesimal fraction inside V
produces an event of that size. This requires that Ps � 1, so
Gstim � 1=Pc. Because this is the same as the distribution of
faults intersecting V, it results in more events at every mag-
nitude than GRD. An intermediate case is that some repre-
sentative fraction of the fault needs to be contained within V
to result in a rupture, for example, the center, which results in
ordinary GRD. All of these scenarios assume that a
particular source either hosts an earthquake or it does not;
partially ruptured sources are not considered.

Shapiro et al. only consider full-fault ruptures; they have
not explored the case in which earthquake ruptures are con-
fined to the perturbed volume V. Their lower-bound scenario
does restrict all events to V, but under the restrictive
assumption that the entire fault must be contained within
the region. It could be possible for a rupture to begin to grow
inside V, then arrest when encountering an increase in
strength at the edge of the region. This might be the case
in areas of low background stress, where the perturbation
due to injection is sufficient to cause nucleation and rupture
inside the perturbed zone, but there is insufficient stress out-
side the zone for rupture to continue. It is this case of partial
ruptures that we investigate in this study.

Method

In this study, we use the idealized geometry of Segall
and Lu (2015) to simplify analysis of the complete probabi-
listic distribution of event sizes as a function of time.
Figure 1a shows the geometry used to simulate earthquake
magnitudes. We assume injection at a point in a full-space
with homogeneous and isotropic properties. No events occur
outside of the local region perturbed by injection, which is
assumed to be spherical with radius a�t� and cross-sectional
radius r�z� (Fig. 1). Diffusive processes lead to a gradual de-
crease in pore pressure and stress with distance from the in-
jector; here, we model the transition from stresses high
enough to allow dynamic rupture to those too low as a hard
boundary for mathematical tractability, which is a strong
simplification. We will show that this rather artificial cutoff
leads to some interesting behavior under certain conditions.

All faults have the same unit normal, which we take
without loss of generality to be parallel to the z axis. Earth-
quakes are modeled as circular ruptures with radius rs,
occurring on circular faults with radius ρ. The location of the
center of a fault hosting an earthquake is denoted by rc.
Again for simplicity, we make the assumption that no events
nucleate or propagate outside the spherical stress-perturbed
region with radius that grows in time since injection. Segall

r(z)

rc

rs= ρ r(z)
rs< ρ

ρ

(c)(b)

z

r(z)

Point 
injector

Zone of elevated 
pore pressure

(a)
Homogeneous, 

isotropic full-space

Circular faulta(t)

Figure 1. (a) Basic geometry of the model. The perturbed re-
gion is represented as a sphere with radius a�t� ∝ ��

t
p

, with the z
axis perpendicular to circular crack-like faults of constant orienta-
tion. Denote r�z� as the cross-sectional radius of the sphere at a
given z. (b) A cross-sectional view, with a single fault with radius
ρ located a distance rc from the center of the circle. The earthquake
will have radius rs � ρ, because the fault is completely inside the
perturbed region. (c) A fault of the same size as in (b), but in this
case located only partially inside the sphere, so the earthquake ra-
dius rs will be less than ρ. The color version of this figure is avail-
able only in the electronic edition.
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and Lu (2015) restricted their analysis to faults that lie com-
pletely within the region of elevated pore pressure (Fig. 1b),
neglecting faults that are only partially inside (Fig. 1c). Here,
we include these partial ruptures (in an idealized fashion) in
modeling the earthquake-size distribution.

Figure 1b shows an example in which the fault and
earthquake sizes are identical (i.e., rs � ρ), because the fault
is completely inside the spherical perturbed region. Figure 1c
shows a second case in which the fault is larger than the in-
duced earthquake because it is only partially within the per-
turbed region. For simplicity, the partial ruptures are modeled
as the largest circle on the fault inscribed within the per-
turbed region with radius r�z�. The two faults in (b) and
(c) are the same size, but because of the differences in their
locations relative to the injection point they end up hosting
earthquakes of different sizes. Events can be as large as the
hosting fault, but may be smaller. Faults located completely
outside the perturbed region do not host earthquakes.

Based on the above assumptions, we express the general
form for the total rate of earthquakes in time and magnitude
R�Mw; t� in the following form:

EQ-TARGET;temp:intralink-;df4;55;481R�Mw; t� �
Z
V
R�x; t�P�Mwjx; t�dV; �4�

in which R�x; t� is the rate of earthquake nucleations as a
function of space and time, and P�Mwjx; t� is the conditional
probability that a nucleation at location x and time twill give
rise to a magnitudeMw event. The volume integral is over the
region of crust where the stress and pore pressure has been
sufficiently perturbed to induce events, which we approxi-
mate as a sphere with radius proportional to a�t� ∝ �����

ct
p

.
Expressing equation (4) as a function of event radii rs

instead of magnitude:

EQ-TARGET;temp:intralink-;df5;55;337R�Mw; t� �
Z
V
R�x; t�P�rs�Mw�jx; t�

���� drs
dMw

����dV: �5�

The expression for j drs
dMw

j is given in the Appendix. For
simplicity, we assume that the probability P�rsjx; t� does
not depend explicitly on the absolute location x, only on
the relative location of the fault center to the injection point
jx − xinjj � rc. We further assume a uniform distribution of
fault centers in space. The latter is sensible in that there is no
a priori reason that the distribution of faults should depend
on injection location (although of course it could). Because,
under these assumptions, the conditional distribution of
events depends only on the radius of the perturbed region,
equation (5) then simplifies to

EQ-TARGET;temp:intralink-;df6;55;163Rt�Mw� �
�Z

V
R�x; t�dV

�
P�rs�Mw�; a�t��

���� drs
dMw

����
� �R�t�P�rs�Mw�; a�t��

���� drs
dMw

����; �6�

a function parameterized by time t. Here, �R�t� is the volume-
integrated rate of nucleations.

To reiterate, equation (6) is correct if the probability of a
particular size event is dependent only on the spatial distri-
bution of faults, not where on the fault the nucleation occurs.
Furthermore, we neglect interactions between events, such
that probabilities of event sizes are not at all dependent on
prior events. We proceed with these approximations, recog-
nizing that a more complete treatment would need to account
for the locations of the event hypocenters as well as fault
centroids and elastic interactions between sources.

Derivation of P�rs; a�t��: The 2D Case

The distribution P�rs; a�t�� can be found by integrating
over the conditional probability P�rsjρ; rc; r�z�; a�t��.

We first derive the 2D expression for fixed r, and later
integrate over all r�z�. The 2D solution could also be useful
if, for example, the earthquake sequence of interest occurs
more or less on a single plane, such as might be observed
for injection into a highly fractured zone between two more
competent regions. For fixed r and time

EQ-TARGET;temp:intralink-;df7;313;499P�rs;r;ρmax��
Z

ρmax

0

Z
r�max�
c

0

P�rsjρ;rc;r�P�ρ;rc;r;ρmax�drcdρ;

�7�
in which ρmax is the largest fault radius present, and
P�ρ; rc; r; ρmax� is the joint distribution of fault sizes and
center locations, which are sensibly taken to be independent;
furthermore, the fault-size distribution is independent of
r�z�, so P�ρ; rc; r; ρmax� � P�ρ; ρmax�P�rc; r; ρmax�.

The distribution of fault sizes is given by
P�ρ; b; ρmax� � G�ρ; b�; in which G�ρ; b� is such that the
resulting magnitudes are GRD-distributed with a certain
b-value in the absence of stress perturbations. G�ρ; b� is
derived in the Appendix to be

EQ-TARGET;temp:intralink-;df8;313;327G�ρ; b� �
�

2b
ρ−2bm

�
ρ−2b−1 �8�

(see equation A13) in which ρm is the smallest fault radius
and b is the b-value.

Assuming that source centroids are spatially uniform
implies that P�rc� linearly increases with rc: P�rc� � κrc.
The constant κ is determined by the constraint that the
cumulative probability over rc is unity, but in practice can be
ignored, as the final distribution can be normalized to unit
area. The parameter r�max�

c � r� ρmax is fixed by the maxi-
mum fault size, because faults located at distances greater
than this do not contribute events (Fig. 2a).

There are three possible scenarios that can lead to earth-
quakes with radius rs. The first is shown in Figure 2b (case
1). The probability that an earthquake occurring on a fault
with radius ρ will be completely inside the perturbed region
(shown as the large circle with solid outline) is given by the
ratio of areas A/B, and denoted Pin by Segall and Lu (2015).
Area A is where the faults are fully contained within the re-
gion; B is where the same size faults have at least one point
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within the perturbed region. The condition
that the fault be completely within the per-
turbed zone is rc ≤ r − ρ.

The second case is shown in Figure 2c
(case 2) and represents sources only parti-
ally within the perturbed region such that
the earthquake sizes are rs < ρ. The prob-
ability of these partial events is denoted by
Pp. For simplicity, we consider the earth-
quake radius to be the largest inscribed
circle between the fault and the perturbed
region. Case 2 occurs for sources with
centers rc located within the range
r − ρ ≤ rc ≤ r� ρ. The radius rs of a
partial event is a function of rs; rc, and
ρ: rs � �ρ� r − rc�=�2�, as discussed in
detail below and shown in Figure 3.

Case 3 is the special case when a fault
with radius ρ > r completely covers the
perturbed area. Under our stated assump-
tions, the resulting earthquake will have
radius equal to r because the background
stress outside the region is too low to allow
the earthquake to continue to propagate,
even though the fault extends beyond this
region. The probability of an earthquake
with radius rs � r, denoted by Pr, occur-
ring on a fault large enough to cover the
entire region is given by the ratio of areas
C/D (Fig. 2d). Area D is the circle such
that any fault with radius ρ and centroid
rc ≤ ρ� r touches the perturbed zone
with at least one point, whereas area C is
the circle such that any fault with radius ρ
and centroid rc ≤ r� �ρ − 2r� � ρ − r
completely covers the perturbed region.

Thus, the total description of event ra-
dius rs can be determined geometrically as
a piecewise function of ρ; rc, and, r as shown in Figure 3.
Mathematically:

EQ-TARGET;temp:intralink-;df9;55;253rs �

8>><
>>:
ρ if ρ < r and rc < r − ρ
ρ�r−rc

2
if jr − ρj < rc < r� ρ

r if ρ > r and rc < ρ − r
0 if rc > r� ρ

: �9�

Figure 3a composes two plots superimposed, with the lower
and left axes together and the upper and right axes together.
Source centroid location rc is plotted on both horizontal
axes, and rs is plotted on both vertical axes, but the scales
are different based on whether ρ (fault radius) is greater than
or less than r. For ρ < r, use the left and lower sides of the
graph, and for ρ > r, read the upper and right sides. The sec-
ond expression in equation (9) above can be derived by con-
sidering Figure 3b. This applies to faults located partially

inside the perturbed region (corresponding to case 2
in Fig. 2c).

The probability P�rsjρ; rc; r� is uniquely determined
from equation (9)

EQ-TARGET;temp:intralink-;df10;313;227P�rsjρ; rc; r� �

8>>><
>>>:

δ�ρ− rs� if ρ < r and rc < r− ρ

δ
�
ρ�r−rc

2
− rs

	
if jr− ρj< rc < r� ρ

δ�r− rs� if ρ > r and rc < ρ− r
0 if rc > r� ρ

;

�10�

in which δ is the Dirac delta function.
To find P�rs; r�, substitute equation (10) into equa-

tion (7) by decomposing the integral into the sum of four
terms, one each for the first and third lines in equation (10),
and two for the second (accounting for faults larger or

r(z)

rc rs

rs
rc

r(z)

r=rs

(b)

(c) (d)

A

C

B

D

rc

1

fault with 
radius max

rc
(max)

p(
r c)

z

Stress-perturbed 
zone

fault with radius < max

(a)

ρ ρ

Figure 2. Diagrams illustrating the distribution of rc and how faults contribute event
sizes depending on their relative location to the perturbed region. (a) Upper: schematic
showing a cutaway view of one quadrant of the stress-perturbed region, with example fault
locations shown. Only faults or parts of faults inside the perturbed region host earthquakes.
Length scales in this diagram are normalized by a�t� such that r�max�

c � 1� �ρmax=a�t��.
Lower: probability distribution of rc. x axis in both diagrams is rc. (b–d) Cases that pro-
duce rs-size earthquakes. Circles with radius r or r�z� denote slices through the stress-
perturbed region. Circles with radius ρ represent faults; circles with radius rs represent
earthquakes. (b) Case 1 (Pin): a fault with radius ρ is completely inside the perturbed
region and produces an earthquake with radius rs � ρ. Dashed circles outline areas A
and B with radius r − rs and r� rs, respectively. (c) Case 2 (Pp): a fault that is partially
inside the perturbed region and produces an earthquake with radius rs < ρ. The fault may
lie on any point of the dashed circle and contribute an rs-size event. (d) Case 3 (Pr): a fault
with radius ρ completely covering the perturbed region such that the earthquake has radius
rs � r�z�. A second fault of the same size is shown that just touches the edge of the
perturbed region, and its center outlines the outer dashed circle. Areas C and D are denoted
by the dashed circles and have radius ρ − r and ρ� r, respectively. The color version of
this figure is available only in the electronic edition.
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smaller than r separately). This gives the following expres-
sion for P�rs�:
EQ-TARGET;temp:intralink-;df11;55;318

P�rs; r�=κ �
Z

ρmax

0

�Z
r−ρ

0

rcdrc

�
δ�ρ − rs�G�ρ; b�dρ

�
Z

r

0

�Z
r�ρ

r−ρ
δ

�
r� ρ − rc

2
− rs

�
rcdrc

�
G�ρ; b�dρ

�
Z

ρmax

r

�Z
ρ�r

ρ−r
δ

�
r� ρ − rc

2
− rs

�
rcdrc

�
G�ρ; b�dρ

� δ�r − rs�
Z

ρmax

r

�Z
ρ−r

0

rcdrc

�
G�ρ; b�dρ: �11�

The first term corresponds to case 1 in Figure 2b and the first
line of equation (9), which we label P2D

in for faults fully inside
the perturbed region. The second and third terms both
correspond to case 2; the second is for ρ < r and the third
is for ρ > r; these terms together are labeled P2D

p , for partial
sources. The fourth term corresponds to case 3 and the third
line of equation (9), which we label P2D

r for earthquakes with
size equal to r�z�.

To evaluate equation (11), we take each term in turn.
Integrating the first term over rc, then over ρ leads to:

EQ-TARGET;temp:intralink-;df12;313;733P2D
in �rs;r��

Z
ρmax

0

δ�ρ−rs�
�r−ρ�2

2
G�ρ;b�dρ��r−rs�2

2
G�rs�:

�12�

The second and third terms are the partial sources Pp. We can
integrate over the delta distributions by rearranging their ar-
guments using standard identities, paying careful attention to
the corresponding limits in the integral over ρ. For the second
term in equation (11), this gives

EQ-TARGET;temp:intralink-;df13;313;623

Pp1�rs;r��
Z

r

0

Z
r�ρ

r−ρ
2δ�rc−�r�ρ−2rs��rcdrcG�ρ;b�dρ

�2

Z
r

rs

�r�ρ−2rs�G�ρ;b�dρ: �13�

The lower integration limit on ρ follows from the fact that
the fault radius cannot be smaller than that of the resulting
earthquake rs.

The third term in equation (11), which is the second term
for partial sources, is given by:

EQ-TARGET;temp:intralink-;df14;313;488

Pp2�rs;r��
Z

ρmax

r

Z
ρ�r

ρ−r
2δ�rc−�r�ρ−2rs��rcdrcG�ρ;b�dρ

�2

Z
ρmax

r
�r�ρ−2rs�G�ρ;b�dρ: �14�

The two integrals for partial sources (equations 13 and 14)
can be combined into a single expression:

EQ-TARGET;temp:intralink-;df15;313;390P2D
p �rs; r� � 2

Z
ρmax

rs

�r� ρ − 2rs�G�ρ; b�dρ: �15�

The fourth and final term gives the probability of earthquakes
of size r

EQ-TARGET;temp:intralink-;df16;313;319P2D
r �rs; r� �

1

2
δ�rs − r�

Z
ρmax

r
�ρ − r�2G�ρ; b�dρ; �16�

which is only nonzero at exactly rs � r. The delta function
nature of this term comes from the unrealistic assumption of
a hard boundary on rupture extent, equal to the dimension of
the source region. All sufficiently large sources that enclose
this area produce exactly the same size event. A more real-
istic model might account for a range of event sizes in this
scenario that would be determined probabilistically in some
way. Such an approach would essentially smear out the delta
function at rs � r.

The total probability P�rs� for fixed r�z� is given by
adding the various contributions

EQ-TARGET;temp:intralink-;df17;313;142P2D�rs; r� � κ�P2D
in �rs� � P2D

p �rs� � P2D
r �rs � r��; �17�

in which the individual terms are given by equations (12),
(15), and (16).
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/2

0
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r + r0

r

r/2

0

 - r  + r0

> r

r

r - Cross-section radius
 - Fault radius

rc - Fault position
rs - Earthquake radius

rs

rc

Case 3
Case 1

Case 2
Case 2

(a)

(b)
r(z)

rc

rs

Origin

Figure 3. (a) Graph of the function that maps r, ρ, and rc to the
rupture radius rs under the assumptions employed here. The left and
lower axes are for ρ < r�z� and the right and upper axes are for
ρ > r�z�. Both horizontal axes are rc and both vertical axes are
rs, but the scales are different. (b) Details of the geometry for com-
puting rs for partial sources. The origin is the center of the perturbed
region with radius r�z� (r in the 2D case), and the fault with radius ρ
has centroid located at rc. The earthquake size is taken to be the
largest inscribed circle between the fault and the perturbed region:
2rs � r�z� − �rc − ρ�. The color version of this figure is available
only in the electronic edition.
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The integration over the distribution of fault radii ρ may
need to be done numerically for general forms of G�ρ; b�. In
the Appendix, we derive the exact form of G�ρ; b� assuming
the GRD and incorporate this form directly into the solution
for P�rs�.

Derivation of P�rs; a�t��: The 3D Case

To determine P�rs� for the 3D case, treat z as a random
variable and integrate the 2D distribution from equation (17)
over z

EQ-TARGET;temp:intralink-;df18;55;266P�rs; a� �
Z

a

−a
P2D�rsjr�z�; a; ρmax�p�z�dz; �18�

in which P2D�rsjr�z�; a; ρmax� is given by equation (17).
From Figure 4, the cross-sectional radius of a 2D slice
through the sphere at z is given by r�z� �

�������������������
�a2 − z2�

p
, in

which a is the radius of the perturbed region. P�z� is uniform
on the interval �−a; a� with probability density P�z� � 1=2a.
The integrand is symmetric in z, so equation (18) reduces to

EQ-TARGET;temp:intralink-;df19;55;155P�rs; a; ρmax� �
1

a

Z
a

0

P2D�rsjr�z�; a; ρmax�dz: �19�
The final consideration is the bounds on z for each term

in equation (17). These can be obtained by noting from
Figure 4 that the largest earthquake obtainable at a given z

has radius rs �
���������������
a2 − z2

p
. For a given rs, the maximum pos-

sible jzj that contains this source is thus zc �
���������������
a2 − r2s

p
, as

shown in Figure 4.

Sources Fully inside (Pin). The first term in equation (17) is
found by setting r�z� �

���������������
a2 − z2

p
and integrating over the

range 0 < z < zc

EQ-TARGET;temp:intralink-;df20;313;659Pin�rs� �
G�rs�
2

Z
zc

0

� �������������������
�a2 − z2�

q
− rs

�
2

dz

� G�rs�
2

�
a2zc − a2rs cos−1

�
rs
a

�
−
z3c
3

�
�20�

(see Fig. 4) consistent with the results of Segall and Lu
(2015). Normalizing z′c �

��������������
1 − r′2s

p
, in which ar′s � rs

and az′c � zc, shows that the scaling of the sphere can be
neglected in the derivation. Thus, for the rest of the deriva-
tions, we scale all lengths by 1=a�t� to work with a unit
sphere, and we drop the prime notation for conciseness
unless needed for clarity.

Partial Sources. Integrating P2D
p �rsjr�z�� over z

EQ-TARGET;temp:intralink-;df21;313;474

Pp�rs� � 2

Z
ρmax

rs

�Z
zc

0

� �������������
1 − z2

p
� ρ − 2rs

�
dz
�
G�ρ; b�dρ

�
Z

ρmax

rs

�cos−1�rs� � �2ρ − 3rs�zc�G�ρ; b�dρ; �21�

in which we reversed the order of integration, noting the
limits are constants with respect to ρ and z.

Earthquake Sizes Equal to r. We show in the Appendix
that integrating the third term for Pr gives

EQ-TARGET;temp:intralink-;df22;313;338Pr�rs� �
1

2

rs
zc

Z
ρmax

rs

�ρ − rs�2G�ρ; b�dρ: �22�

Final Result. From equation (6), the total probability of
events in time and magnitude is

EQ-TARGET;temp:intralink-;df23;313;255R�Mw; t� � �R�t�P�rs�Mw�jrc; a�t�; ρmax�
���� drs
dMw

����; �23�

in which �R�t� is the volume-integrated rate of earthquake
nucleations.

The probability P�r′s � rs=a�t�� can be written as the
sum of the three terms previously labeled as the sources fully
inside, partially inside, and fully overlapping the perturbed
region:

EQ-TARGET;temp:intralink-;df24;313;136P�r′s; ρmax� � κ�Pin�r′s� � Pp�r′s; ρmax� � Pr�r′s; ρmax��:
�24�

Substituting equations (20)–(22) into equation (24)
gives

0
0

a(t)

r(z)z
Plane of the 

fault

θ

Given earthquake 
dimension

rs

zc

a(t)

θc

Figure 4. Figure showing how to compute r�z� for a given z and
zc for a given rs. The diagram shows the perturbed region
perpendicular to the z direction. The upper part of the graph shows
that r�z� �

���������������������
a�t�2 − z2

p
. The lower part shows that the maximum

value of z at which earthquakes of radius rs just fit inside the per-
turbed region is given by zc �

���������������������
a�t�2 − r2s

p
. The color version of

this figure is available only in the electronic edition.
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EQ-TARGET;temp:intralink-;df25;55;733

P�r′s; ρmax� �
κ

2

�
zc − r′s cos−1�r′s� −

z3c
3

�
G�rs�

� κ

Z
ρmax

r′s

�cos−1�r′s� � �2ρ − 3r′s�zc�G�ρ; b�dρ

� κ

2

r′s
zc

Z
ρmax

r′s

�ρ − r′s�2G�ρ; b�dρ: �25�

The probabilities depend on the fault-size distribution
G�ρ; b�. Integrating over ρ (as we do in the Appendix using
the GRD) gives the final distribution for fault radii. These
expressions are given in equations (A23) and (A27); because
the expressions are lengthy we do not repeat them here. We
also show in the Appendix that if b > 1, it is possible to
allow ρmax → ∞, whereas for b ≤ 1, ρmax must be specified
for the distribution to converge.

To transform the posterior probability distribution P�rs�
to P�Mw�, use

EQ-TARGET;temp:intralink-;df26;55;518

���� drs
dMw

���� �
�

ln�10�
2��π=c�Δτ�1=3 10

�Mw�6:03�=2
�

�26�

(derived in the Appendix), in which Δτ is the stress drop, and
c � 7π=16 is a geometrical constant. Combining this with
equation (25) into equation (23) gives the final distribution
of earthquake magnitudes for a given time.

Equation (25) is for a fixed radius, a�t� and hence time.
To obtain the time-integrated distribution, it is necessary to
numerically integrate equation (23) with equation (26) to get
the final distribution on event magnitudes for all time.

Discussion

Example Simulations

The results presented in the Method section provide the
complete time-dependent FMDs for seismicity restricted by
the perturbed volume, as well as allow for fast simulations of
earthquake magnitudes. Inputs to the model are the time-
dependent radius of the perturbed region a�t� and the
volume-average rate of nucleations �R�t�. Parameters are the
b-value, the largest fault radius, and the stress drop. We
assume constant stress drop to compute magnitude with the
scaling Δτ ∼ μ�Δu=rs�, in which Δu is average slip and μ is
shear modulus. Results of the current study provide the FMD
that varies in time, which can be sampled to provide simu-
lated seismicity catalogs. Figure 5 shows the relative contri-
butions from Pin, Pp, and Pr for various parameter values, at
snapshots in time (fixed a�t�). Plots (a) and (b) assume a
maximum fault size of 0.5 km, whereas plots (c) and (d) as-
sume ρmax of 1.5 km; a � 0:25 km for plots (a) and (c) and
2.5 km for plots (b) and (d).

Because we have assumed r�z� is the upper bound on
rupture size, and the dominant contribution to this term is
from faults with radii larger than a (when they exist), when
a ≫ ρmax, Pr does not contribute events (Fig. 5b,d).

Figure 6 shows FMDs at snapshots in time comparing the
predicted FMD from the current model to that of Segall and
Lu (2015), as well as the GRD for the same parameter values
as Figure 5. Lines are the theoretical results; symbols show
numerically simulated results for both the current model
and the Segall–Lu result. The numerical simulation is
conducted by randomly drawing from the distributions on
z, fault centroid locations rc, and fault radii ρ, and computing
the resulting rs using equation (9). Vertical dashed lines show
the magnitude corresponding to a�t�, and the maximum mag-
nitude (corresponding to ρmax) is shown if less than a�t�.

As expected, the distribution changes significantly for
different ρmax=a. In all cases, the model presented here pre-
dicts more events at each magnitude than the Segall–Lu
model, as is expected because we include the additional terms
Pp and Pr. For large values of ρmax=a, the FMD for the cur-
rent study predicts a significantly higher rate of events than the
Segall–Lu model, whereas for small ρmax=a the two models
are similar, because Pin dominates the other two terms.

The increase in the frequency of events relative to the
GRD seen in Figure 6a,c is due to the Pr term. Those result
from the hard boundary on event size at a�t�; sources that
completely cover the perturbed region contribute an r�z�-ra-
dius event. The increase is significantly less than that predicted
by the upper end-member model of Shapiro et al. (Shapiro
et al., 2011, 2013; Shapiro, 2015) because they assumed the
entire fault would rupture once nucleated. In the model, we
explore here, both nucleations and ruptures are limited by V.

We construct theoretical FMDs assuming 150 days of
constant injection rate and a diffusivity of D � 0:01 m2=s
(Fig. 7). The instantaneous FMDs are shown every four days,
shaded by the time since the onset of injection, for Pin only
(Fig. 7a), Pin � Pp (Fig. 7b), and the full model including Pr

(Fig. 7c). Ordinary GRD is the dashed line in each plot. The
insets show the time-integrated FMD that would be observed
integrating over all 150 days of injection assuming a constant
rate of seismicity. When only Pin is included, significant roll-
off occurs, especially at short times, and the time-integrated
FMD falls off faster. With Pin � Pp, the FMDs follow GRD
except at the high magnitudes, in which rolloff occurs, and
cuts off at a�t�. With all terms included, the FMDs uptick
at a�t� (Fig. 7c). In this case, rolloff eventually occurs at late
times when ρmax=a�t� is small and the largest fault size be-
comes the limiting dimension for events. The inset in Figure 7c
shows all three time-integrated plots for comparison. In this
case, the time-integrated distribution is dominated by Pin

and Pp.
In Figure 7, the instantaneous magnitude distributions

transition from having a sharp uptick at a�t� to rolling over
as a�t� approaches ρmax. We consider it very unlikely that the
sharp uptick would be observed in reality, because the hard
boundary on rupture size such as we have imposed is not
likely to occur in nature. Rather, events may arrest over some
range of distances. In the low stress limit we envision, this
range could be small, so we approximate it as a hard boun-
dary. Also note that the distribution of events integrated over

8 J. Maurer and P. Segall

BSSA Early Edition



time smoothes out these upticks as a�t� grows. Both of these
effects result in a bump in the distributions instead of a sharp
peak (e.g., see Figs. 8–10).

Comparison to Gutenberg–Richter

In this study, we derived expressions for the instantane-
ous FMDs for faults that follow the GRD, with the constraint
that earthquakes only occur within a stress-perturbed region.
One can integrate the instantaneous FMDs over time to see
how, given a seismicity rate history, the time-integrated FMD
compares to the GRD. This involves weighting the instanta-
neous FMDs at each timestep by the rate of seismicity at that
time (equation 23). The time-integrated FMD for any se-
quence thus depends on both the size of the perturbed region
and the rate of events, as well as the b-value, maximum fault
size, and assumed stress drop. Sample time-integrated FMDs
are shown in Figure 8 for a constant seismicity rate. For

b � 1, the distribution predicts more large events than ordi-
nary GRD for some range of magnitudes, prior to the distri-
bution rolling over at the magnitude corresponding to the
(time-dependent) perturbed zone radius a�t�. To reiterate,
this is due to the restriction on event sizes to be equal to
or less than the size of the perturbed region. Larger sources
can only contribute events with radius as large as a�t�, so the
larger sources fold over into smaller events. For b � 1:4,
there are fewer events predicted than the GRD. ρmax in these
simulations is approximately 1550 m, corresponding
to M�max�

w � 5.
In the model presented here, the distribution of event

sizes depends on both the geometrical terms and the total
rate of events. From the inset in Figure 8, it can be seen that
the time-integrated FMDs can be very similar to ordinary
Gutenberg–Richter (GR). We discuss this issue further in
reference to an example simulation as well as two actual in-
duced sequences.
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Figure 5. Relative contributions of each term in equation (25) for a b-value of 1. x axis shows fault radius normalized by a, and y axis
shows the relative frequency of event sizes. (a,b) ρmax � 0:5 km, equivalent toMw � 4; (a) a�t� � 0:25 km, ρmax=a � 2; (b) a�t� � 2:5 km,
ρmax=a � 0:2. (c,d) ρmax � 1:5 km (Mw � 5); (c) a�t� � 0:25 km, ρmax=a � 6; (d) a�t� � 2:5 km, ρmax=a � 0:6. The color version of this
figure is available only in the electronic edition.
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Comparison to Previous Work

Figure 9 compares the result from the current study with
Segall and Lu (2015) and Shapiro et al. (Shapiro et al., 2011,
2013; Shapiro, 2015). Figure 9a shows the time-integrated
FMDs for each model, normalized to the same number of
events, integrating up to a�t� � 100 m. For these simula-
tions, b � 1, Mc � 0, and Mmax � 5. The Segall and Lu
(2015) model (referred to as Pin in this study) is identical
to the lower end-member model of Shapiro et al. The model
presented in this study truncates at a magnitude correspond-
ing to a�t� � 100 m, or Mw 2.53, as does the lower Shapiro
et al. model. The upper end-member model truncates at
Mmax � 5. Figure 9b shows the ratio of each model to ordi-
nary GRD as a function of magnitude. The difference be-
tween the present model and the upper- and lower-bound
models is a direct consequence of the assumptions we made
about the stress conditions of the system: nucleations may
occur on any fault inside the perturbed region, but the size
of events are limited by the low background stress to only
rupture the fraction of the fault inside the perturbed region.

Both the FMD derived in the present study and the Sha-
piro et al. upper end-member FMD predict more events than
GRD for a range of magnitudes. In the Shapiro et al. model,
this is because any fault with at least a small fraction inside
the perturbed volume V experiences a full rupture. In con-
trast, the FMD derived in this study allows for nucleation on
faults that overlap V, but events may only be as large as the
part of the fault contained within V. This assumption of a
hard boundary on ruptures at a�t� results in the slight
increase in probability just below the corresponding magni-
tude, because larger faults that intersect the region contribute
events only as large as a�t�. In our model, no events larger
than a�t� occur, but in the Shapiro upper end-member model,
earthquakes of arbitrarily large size may occur due to stimu-
lation, a limit we associate with a high background shear to
normal stress ratio.

Earthquakes post Shut-in

A significant concern for hazard management is that the
largest induced earthquake can occur after the injection well

0.5 1.5 2.5 3.5 4.5 5.5

10-3

10-2

10-1

100

a(
t)

M
W

(m
ax

)

0.5 1.5 2.5 3.5

M
W

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
fr

eq
ue

nc
y

a(
t)

10-4

10-3

10-2

10-1

100

0.5 1.5 2.5 3.5

GRD

Theoretical - this study

Theoretical - Segall and Lu

Simulation - this study

Simulation - Segall and Lu

R
el

at
iv

e 
fr

eq
ue

nc
y

a(
t)

(a) (b)

(d)(c)

0.5 1.5 2.5 3.5 4.5 5.5

M
W

10-5

10-4

10-3

10-2

10-1

100

M
W

(m
ax

)

a(
t)

Figure 6. Comparison of the current study with the Segall and Lu (2015) model and ordinary Gutenberg–Richter (GR), including both
theoretical and example simulation results. Values of ρmax and a�t� correspond to those in Figure 5. The color version of this figure is
available only in the electronic edition.
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has been shut in (e.g., Deichmann and Giardini, 2009;
Dorbath et al., 2009; Kim, 2013). One possible mechanism for
this is that pore-pressure diffusion continues away from the
injector after shut-in, and as a result, the size of the stress-
perturbed region continues to grow for some time.

To explore this, we simulate a sequence of events using
the rate of earthquakes from Segall and Lu (2015, fig. 17),
scaled to give a total of 10,000 events (Fig. 10). Injection oc-
curs at a constant rate from day 1 to day 15, then ceases. The
radius of the perturbed region (black line in Fig. 10a) grows
proportionally to

�����
ct

p
, with c � 0:0679 m2=s. Samples are

drawn randomly from both the GRD and equations (A27)
and (23), using a b-value of 1 andMmax

w � 6�ρmax ≈ 4:9 km�.
Figure 10 shows several noteworthy features:

1. The largest event in this simulation occurs just after shut-
in. This happens because at early times after shut-in,
pore-pressure diffusion continues away from the injector,
and the total rate of events is still high (and actually
increases very slightly due to poroelastic effects; for
explanation, see Segall and Lu, 2015). There is statistical
variability in this result; some simulations using the same
parameters did not show the largest event occurring after
shut-in.

2. During the injection phase, more events are expected at
magnitudes just below the rolloff magnitude than ordi-
nary GR (Fig. 10b; the rolloff here is not at Mmax

w , but
at a�t�). After injection ceases diffusive spreading contin-
ues but the rate of events decreases. If the plots were
extended to much lower rates and higher magnitudes,
the same increase in rate, as seen during the injection
phase, would be seen in the postinjection phase.

3. The largest magnitude events during the post-shut-in
phase appear to be much greater than that predicted by
the theoretical FMD. This is because the FMD is time
integrated; at early times, the theoretical FMD is much
more similar to the injection-phase FMD, but the contri-
bution to the overall postinjection phase is small. It is pre-
cisely this point at which the model predicts the largest
magnitude event could be observed, when the rate of
events is still high and the perturbed region is still grow-
ing in time, as is observed in this simulation.

4. Ordinary GR predicts larger events at short times than the
present study, as seen in Figure 10a, in which some
events exceed the magnitude cutoff at short times. Some
of the events generated using the approach described in
this study can also be seen to lie directly on the line, in-
dicating that a slightly larger event would likely have oc-
curred in the absence of a hard bound on event size.

We note that limiting the largest magnitude in the low-
stress environment can actually slightly increase the number
of events at magnitudes just below the rolloff (Fig. 10b),
relative to simply truncating ordinary GRD. The effect will
in general depend on the specific parameters (b-value, ρmax)
seismicity rate �R�t�, and the perturbed region expansion a�t�.
For some parameters, there is no increase relative to the

150

1

50

100 T
im

e in D
ays

(a)

(b)

(c)
0.5 1.5 2.5 3.5 4.5

10-4

10-2

100

Pin + Pp

0.5 1.5 2.5 3.5 4.5

10

10

10

0.5 1.5 2.5 3.5 4.5

10-4

10-2

100

Pin only
0.5 1.5 2.5 3.5 4.5

10-4

10-2

100

10-6

0.5 1.5 2.5 3.5 4.5

Magnitude

10-4

10-2

100

Pin + Pp + Pr

0.5 1.5 2.5 3.5 4.5

10-4

10-2

100

Pin + Pp

10-6

Pin

Pin + Pp + Pr

-4

-2

-6

100

Figure 7. Instantaneous frequency–magnitude distributions
(FMDs) every 4 days for 150 days of simulated injection, assuming
a diffusivity of 0:01 m2=s. Insets show the time-integrated (overall)
FMD obtained by integrating over 150 days assuming a constant
rate of seismicity. M�max�

w � 4:5 and b � 1. The dashed line shows
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plete solution for P�rs� from equation (25). The inset in (c) shows
all three time-integrated plots. The color version of this figure is
available only in the electronic edition.
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truncated GRD (Fig. 8b). We ignore the propagation of
decreasing pore pressure away from the injector after
shut-in. If earthquakes cannot rupture through a region of
low pore pressure, this would impact the distribution of event
sizes. We also ignore interactions between sources, which
could also impact the magnitude distribution.

As can be seen from the time-integrated distributions in
Figure 10b, the FMD at lower magnitudes (or late times) is
similar to the GRD, so distinguishing between these two
models without a very complete earthquake catalog could be
difficult. To illustrate this problem, we show data from two
induced seismicity sequences in Figure 11: the Basel

Enhanced Geothermal System (EGS) sequence (Kraft and
Deichmann, 2014), and the Paralana (Cooper basin, Aus-
tralia) EGS sequence from 2009 (Albaric et al., 2014). For
both of these sites, we fit a diffusion curve to the cloud of
seismicity as an approximation for the size of the perturbed
volume V, and then compare the corresponding magnitude of
an event fully spanning the region to the observed seismicity.
(Estimating Mmax using the relation of McGarr and Barbour,
2017, instead of the seismicity cloud gives similar results for
stress drops of 1–3 MPa, typical for the Basel earthquakes;
Goertz-Allmann et al., 2011.) In both cases, it can clearly be
seen that the observed magnitudes do not come close to this
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limit, even at very early times. However, fitting a diffusion
curve to the seismicity, though widely practiced, ignores the
impact of static and especially dynamic stress transfer
between events, which could significantly overestimate the
volume stimulated by pore-pressure diffusion.

Recall that we assumed (as do Segall and Lu, 2015; Sha-
piro, 2015) that the background distribution of event sizes
follows GR. Figure 11 may be compared with the simulation
in Figure 10, which has a very high rate of events initially
and thus several events that are limited by the size of V. The
Basel and Paralana sequences may not generate enough
earthquakes to sample the limits of V. We conclude that
either V is overestimated by fitting a diffusion profile, or
there are not enough large events in either of these sequences
to test whether or not events are bounded by the perturbed
volume. The predictions of the model presented in this study
are nearly identical to GR in the observed range of magni-
tudes for both of these injection sequences.

van der Elst et al. (2016) also argue that most induced
sequences do not contain enough events to generate magni-
tudes close to the volume-based limit suggested by McGarr
(2014). The induced seismicity sequences that do contain
enough events to potentially test the hypothesis are the recent
large earthquakes in Oklahoma at Prague, Fairview, Cushing,
and Pawnee. These may provide evidence that events are
limited by injected volume (McGarr and Barbour, 2017),
but are more difficult to interpret in the context of a single
point injector in a homogeneous medium.

General Tests for Time-Varying FMDs

There does seem to be evidence from the Basel sequence
of a change in the distribution of events before and after shut-
in of the injection well (Bachmann et al., 2011). Here, we
propose three tests for time-varying changes in the FMD
of events and apply these to the Basel and Paralana seismic-

ity as example sequences that seem to show a change (Basel)
and no change (Paralana). We are aware of selection bias in
that we have already observed the largest event after shut-in
at Basel. Future prospective tests will be needed to determine
if this occurs at other locations.

The first test is to qualitatively detect a change in the
distribution through time by plotting earthquake magnitudes
versus event number (Fig. 12). For a time-invariant process,
one would expect to see a uniform distribution of magnitudes
versus event number. Qualitatively, the Basel sequence
appears to have more large events at the end of the sequence,
compared with a uniform distribution. The Paralana
sequence appears qualitatively closer to uniform.

The second tests the null hypothesis that the observed
maximum magnitude for the sequence is consistent with
GR and the b-value estimated prior to shut-in; that is, that
there is no change in the distribution between pre- and post
shut-in. This is relevant to a forecasting scenario, in which it
is of interest to forecast the largest magnitude given the rate
of events and an initial estimate of the b-value. Given a
b-value and observed number of events, van der Elst et al.
(2016) derived the expression for the distribution on Mmax.
Figure 13 shows the predicted mode and upper and lower
95% confidence bounds for a suite of b-values, together with
distributions for b-value estimated using only events before
shut-in (darker) and after shut-in (lighter). We used the Aki
maximum-likelihood method to estimate b-values, and the
distributions were generated using the bootstrap method.
In this case, the observed Mmax is not rejected at the 95%
confidence level assuming the b-value prior to shut-in.

The third test for a change in the distribution is to deter-
mine whether or not the number of events above a certain
magnitude threshold is consistent with the estimated b-value.
For example, at Basel we can ask whether the number of
events above a specified threshold observed after shut-in is
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consistent with the b-value estimated before shut-in. To do
this, we compute the probability distribution of observing NM

events equal to or above magnitude M, given the estimated
b-value and the observed number of events. This distribution
can be numerically simulated by generating sequences of
events with magnitudes distributed according to GR (or any
of the models discussed in this article) and tallying the number
of events above the threshold in each sequence. Repeating this
many times builds up an empirical distribution to compare
with the observations. For GR, the distribution can also be
analytically determined by first computing the probability
that an event will be equal to or greater than a given
magnitude:

EQ-TARGET;temp:intralink-;;55;92 P�m ≥ M� � 10−b�M−Mc�:

Then, the binomial probability density function gives the
probability of observing NM successes (i.e., magnitudes equal
to or greater thanM), out of Ne trials, in which Ne is the total
number of events observed.

We apply this test to the Basel seismicity, in which
Ne � 182 and NM � 7 forM � 2:5, all of which occur after
shut-in (Fig. 14). Predictions using the b-value estimated
from seismicity before shut-in (Fig. 14a) and after shut-in
(Fig. 14b) are compared with the observations. This test has
the advantage of more statistical power than merely consid-
ering the single largest event size. Figure 14 shows that it is
very unlikely for the distribution of events before shut-in to
explain the events that occurred post shut-in. This evidence
for a change in the FMD after shut-in supports the conclusion
of Bachmann et al. (2011).
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Conclusions

We analyzed a highly idealized model, consisting of
(1) a spherical stress- and pore-pressure perturbed region,
(2) earthquakes following a truncated GRD, and (3) applying
the assumption that earthquake magnitudes are limited by the
size of the perturbed region. We suggest that these approx-
imations may be appropriate when the background shear to
normal stress ratio is too low to allow self-sustained rupture.

Results show interesting and even unexpected behavior in
the relative frequencies of smaller and larger events during
an injection sequence. Accounting for faults partially inside
and fully covering the perturbed region increases the number
of larger-magnitude events relative to the model in which
faults must be fully within the perturbed volume, and in some
cases even relative to the GRD. Time-dependent changes in
the FMD are predicted that depend on the size of the
perturbed region, total rate of events, maximum fault size,
and b-value. The distribution rolls off at the largest possible
magnitude, which grows in time as the perturbed region
grows. The limiting distribution for ρmax=a�t� < 1 is trun-
cated GR. Even though the largest possible event grows in
time, the largest observed event in any sequence will depend
on the rate of events. The time-dependent changes in the
FMD can lead to time-dependent changes in hazard from the
largest expected events relative to GRD. Although the results
presented here are highly idealized, they are rigorously de-
rived and easily computed, allowing for easy testing against
other data sets.

Data and Resources

Seismicity data for Basel are publicly available from
Deichmann and Giardini (2009). Paralana data were provided
to the authors by J. Albaric, relevant citation is Albaric et al.
(2014). MATLAB codes to generate the plots shown in the fig-
ures in this article are freely available online in GitHub reposi-
tory (www.github.com/jlmaurer/induced‑seismicity‑magnitudes,
last accessed March 2018).
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Appendix

Correction to Gstim in Shapiro et al.

In this study, we presented the model of Shapiro et al. as
given in their publications; however, one problem with this
formulation is that the factor Gstim is not exactly correct as
stated. This can be seen by integrating Pevent over all fault
sizes, which should be unity for a probability:

EQ-TARGET;temp:intralink-;;55;313

Z
ρmax

ρmin

Pevent�ρ�dρ �
Z

ρmax

ρmin

Ps�ρ�
Pc�ρ�

G�ρ�dρ ≠ 1;

which is most glaringly seen by setting Ps � 1 (the upper
end-member model). Then

EQ-TARGET;temp:intralink-;;55;243

Z
ρmax

ρmin

Pevent�ρ�dρ �
Z

ρmax

ρmin

G�ρ�
Pc�ρ�

dρ > 1;

because Pc < 1 for all ρ > 0. The correct expression for
Pevent under the assumptions of Shapiro et al. is then

EQ-TARGET;temp:intralink-;dfa1;55;172Pevent�ρ� �
1

C
Ps�ρ�

G�ρ; b�
Pc�ρ�

; �A1�

in which C is a normalizing constant given by

EQ-TARGET;temp:intralink-;;55;114 C � C�ρmin; ρmax� �
Z

ρmax

ρmin

Ps�ρ�
Pc�ρ�

G�ρ; b�dρ:

Pr for the 3D Case

Considering the third term in equation (11), we integrate
over the domain ρ > r�z� and 0 < rc < ρ − r�z�, which can
be divided into regions B and C (shown in Fig. A1):
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Switching the order of integration is now relatively simple.
We require the following identity for integrating a function
convolved with the delta function

EQ-TARGET;temp:intralink-;dfa3;313;288

Z ∞
−∞

F�x�δ�g�x��dx �
X
i

F�xi�
jg′�xi�j

�A3�

(Gel’fand and Shilov, 1964), in which the prime indicates the
derivative, and xi are the roots of the function g�x�. From
equation (A2), F � F�ρ; z� � �ρ −

�������������
1 − z2

p
�2G�ρ�,

g�z� �
�������������
1 − z2

p
− rs, and jg′�z�j � z=

�������������
1 − z2

p
. g�z� has

two roots: zi � �
�������������
1 − r2s

p
� �zc, but only the positive root

applies here because the integration limits are from 0
to zc. Therefore, we have jg′�zc�j � zc=rs and F�ρ; zc� �
�ρ − rs�2G�ρ�.

Domain C is the simplest to compute, because the limits
of integration are constant. Recalling the scaling 0 < rs < 1

gives
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Figure A1. Domain of integration for Pr (equation A2). The
unit quarter-circle (domain A) is excluded from the integral. Do-
mains B and C correspond to the integral bounds in equation (A2),
and the delta function restricts the integral to r�z� �

�������������
1 − z2

p
� rs

or z �
�������������
1 − r2s

p
� zc. This condition, given by the black horizontal

line, is the integration path for a given z used to compute equa-
tions (A4) and (A5).
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The term for domain B is given by
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Combining these two terms gives the final expression for:

EQ-TARGET;temp:intralink-;dfa6;55;569Pr�rs� �
1

2

rs
zc

Z
ρmax

rs

�ρ − rs�2G�ρ�dρ: �A6�

Transforming Probability Distributions

The derivation in the main article requires the distribu-
tion of fault sizesG�ρ; b�. Although the general expression in
equation (A26) does not require a Gutenberg–Richter distri-
bution (GRD) of fault sizes, we will generally assume in this
study that the background tectonic loading produces a (po-
tentially truncated) GRD. Below we rederive expressions for
transforming between the distribution on fault radius ρ and
magnitudeMw. Our derivations are similar to those of Kagan
(2002) and Shapiro (2015), although they handle slightly dif-
ferent cases of arbitrary stress drop (Shapiro, 2015) and
bounded Gutenberg–Richter (Kagan, 2002).

Earthquake magnitudes and seismic moment are related
by

EQ-TARGET;temp:intralink-;dfa7;55;339Mw � �2=3� log10�M0� − 6:03; �A7�

in which M0 is the moment in N · m (Hanks and Kanamori,
1979). Letting Δτ be stress drop, Δu slip, and μ be shear
modulus, and assuming circular crack-like earthquake
sources, we approximate M0 as μΔuπρ2. Assuming
Δu ∼ Δτρ=cμ, in which c � 7π=16 is the geometrical factor
for circular cracks (Lay and Wallace, 1995), equation (A7)
becomes

EQ-TARGET;temp:intralink-;dfa8;55;221Mw � �2=3� log10��π=c�Δτρ3� − 6:03: �A8�

The GRD on magnitude is used to derive the corresponding
distribution on fault radii. This is the background distribution
of fault dimensions without consideration of perturbation
induced by injection.

Given a map (function or transformation) between ρ and
Mw, defined as F : ρ↦Mw with inverse transformation
F−1 : Mw↦ρ, the probability density function (PDF) for ρ
can be found as

EQ-TARGET;temp:intralink-;dfa9;313;733ϕ�ρ� � ψ�F�ρ��
���� dMw

dρ

����; �A9�

in which ψ � G�ρ; b� is the GRD and ϕ is the corresponding
distribution on ρ. F−1 is found from equation (A8):

EQ-TARGET;temp:intralink-;dfa10;313;673ρ � F−1�Mw� �
�

1

��π=c�Δτ�1=3 10
�Mw�6:03�=2

�
: �A10�

From Richards-Dinger et al. (2010), we have the PDF
ψ�Mw� assuming that M�max�

w ≫ Mc (the magnitude of com-
pleteness)

EQ-TARGET;temp:intralink-;dfa11;313;590ψ�Mw� � b ln�10�10−b�Mw−Mc�; �A11�

in which b is the b-value. Integrating this from Mc to ∞
gives

EQ-TARGET;temp:intralink-;;313;532 b ln�10�
Z ∞
Mc

10−b�Mw−Mc�dMw � b ln�10�
�
−
10b�Mc−Mw�

b ln�10�

�∞
Mc

� 1;

demonstrating that this is a PDF. The term j dMw
dρ j reduces to

EQ-TARGET;temp:intralink-;dfa12;313;454

���� dMw

dρ

���� �
���� ddρ ��2=3� log10�cΔτπρ3� − 6:03�

���� � 2

ln�10�ρ ;

�A12�

in which we can neglect the absolute value sign because
ρ ≥ 0. Substituting equations (A8), (A11), and (A12) into
equation (A9) leads to the PDF on fault radii

EQ-TARGET;temp:intralink-;dfa13;313;355ϕ�ρ� � 2b
ρ
10−

2b
3
�log10��π=c�Δτρ3�−log10��π=c�Δτρ3m�� � 2b

�
ρ2bm
ρ2b�1

�
;

�A13�

in which ρm is the minimum fault size, corresponding to the
completeness threshold. The PDF on fault size ϕ�ρ� is thus
given by a Pareto distribution with shape parameter α � 2b
and scale parameter ρm.

To generate random samples from this distribution, note
that

EQ-TARGET;temp:intralink-;;313;221 T � ρm
U

1
2b

is Pareto-distributed (Tanizaki, 2004, p. 133), in which U is a
uniform random sample.

The final distribution on event radii rs from equation (25)
can be used to determine the distribution on magnitudes pre-
dicted by this study, using the forward mapping from ρ toMw:

EQ-TARGET;temp:intralink-;dfa14;313;118ψ2�Mw� � ϕ2�G−1�Mw��
���� drs
dMw

����: �A14�
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Here, ϕ2 � P�rs� is the PDF for event radii (equation 25) and
ψ2 is the PDF for magnitude. (Here, we are incorporating the
restriction to the perturbed region.) Taking the derivative of
equation (A10) and transforming equation (25), we obtain
the final posterior distribution on magnitude:

EQ-TARGET;temp:intralink-;dfa15;55;673P�Mw� � P�rs�Mw��
�

ln�10�
2��π=c�Δτ�1=3 10

��1=2��Mw�6:03��
�
:

�A15�

Integration over ρ and Limit of Infinite Max
Magnitude

Equation (25) in the main article gives the distribution
on fault radii, taking into account the perturbed region.
G�ρ; b� the background fault distribution is given in equa-
tion (A13).

Substituting equation (A13) into equation (25) gives

EQ-TARGET;temp:intralink-;dfa16;55;500

P�rs; b; ρmax� �
κ

2
�2bρ2bm �

�
zc − rs cos−1�rs� −

z3c
3

�
�r−2b−1s �

� κ�2bρ2bm �
Z

ρmax

rs

�cos−1�rs� � �2ρ − 3rs�zc��ρ−2b−1�dρ

� κ

2
�2bρ2bm � rs

zc

Z
ρmax

rs

�ρ − rs�2�ρ−2b−1�dρ: �A16�

The first integral can be simplified and computed directly

EQ-TARGET;temp:intralink-;dfa17;55;383Z
ρmax

rs

�cos−1�rs���2ρ−3rs�zc��ρ−2b−1�dρ

��cos−1�rs�−3zcrs�
Z

ρmax

rs

�ρ−2b−1�dρ�2zc

Z
ρmax

rs

ρ−2bdρ

�
�
3zcrs
2b

−
cos−1�rs�

2b

�
�ρ−2bmax−r−2bs �� 2zc

1−2b
�ρ−2b�1

max −r−2b�1
s �

�
�
ρ−2bmax

2b

�
γb�ρmax�−

�
r−2bs

2b

�
γb�rs�; �A17�

in which

EQ-TARGET;temp:intralink-;;55;237 γb�x��−cos−1�rs�� zc
4b

1−2b
x�3zcrs; x∈frs;ρmaxg:

If b � 1, the integral becomes

EQ-TARGET;temp:intralink-;dfa18;55;181 �
ρ−2max

2

�
�− cos−1�rs� − 4zcρmax � 3zcrs�

�
�
r−2s
2

�
�cos−1�rs� � zcrs�: �A18�

For the second integral in equation (A16), it is necessary to
distinguish between b < 1, b � 1, and b > 1. If b ≤ 1, the
integral only converges for finite ρmax, whereas for b > 1, the

integral converges even when ρmax → ∞. So the GRD does
not decay sufficiently rapidly to allow the maximum fault
size to go to infinity when b ≤ 1.

Evaluating the second integral for b > 1

EQ-TARGET;temp:intralink-;dfa19;313;685 Z
ρmax

rs

�ρ2 − 2ρrs � r2s��ρ−2b−1�dρ

�
�
ρ−2bmax

2b

�
γ′b�ρmax� −

�
r−2bs

2b

�
γ′b�rs�; �A19�

in which

EQ-TARGET;temp:intralink-;;313;597 γ′b�x� �
b

1 − b
x2 −

4brs
1 − 2b

x − r2s ; x∈frs; ρmaxg:

For b � 1

EQ-TARGET;temp:intralink-;dfa20;313;542

�
Z

ρmax
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�ρ−1 − 2ρ−2rs � ρ−3r2s�dρ

� − ln
�

rs
ρmax

�
−
1

2

�
rs
ρmax

�
2

� 2
rs
ρmax

−
3

2
: �A20�

Now, the solutions for each integral above (for the ap-
propriate values for b) can be substituted into equation (A16).
Doing this for b > 1 gives

EQ-TARGET;temp:intralink-;dfa21;313;418
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γ′b�rs�
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: �A21�

Rearranging the first line gives

EQ-TARGET;temp:intralink-;;313;275 �
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ρm

�−2b
2b

�
zc − rs cos−1�rs� −

z3c
3

�
r−1s

�
�
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ρm

�−2b�2b
3
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�2� r2s� − 2b cos−1�rs�
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�
�
rs
ρm

�−2b
�2Γb�rs��:

Then
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�
�
ρmax

ρm

�−2b rs
zc
γ′b�ρmax� −

�
rs
ρm

�−2b rs
zc
γ′b�rs�: �A22�

Gathering terms and simplifying, the final solution can then
be written as

EQ-TARGET;temp:intralink-;dfa23;55;616

P�rs; b > 1; ρmax; ρm�

� κ

��
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ρm

�−2b
Fb�rs� �

�
ρmax

ρm

�−2b
Hb�rs; ρmax�

�
;�A23�

in which for b > 1
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Fb�rs� � Γb�rs� − γb�rs� −
rs
2zc

γ′b�rs�

� b
3
zc
�2� r2s�

rs
� �1 − b� cos−1�rs� �

�
2b − 3

1 − 2b

�
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�A24�

and

EQ-TARGET;temp:intralink-;dfa25;55;426
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�
b
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�ρmax�2 �
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4b
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ρmax ��6− 7r2s�
�
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Taking the limit as ρmax → ∞, the second term in the brack-
ets in equation (A23) vanishes, leaving only

EQ-TARGET;temp:intralink-;dfa26;313;733P�rs; b > 1; ρmax → ∞� � κ

�
rs
ρm

�−2b
Fb�rs�: �A26�

For b � 1, substituting equations (A18) and (A20) into
equation (A16) gives
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in which for R � rs=ρmax
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