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Geodetic observations on volcanoes can reveal
important aspects of crustal magma chambers.
The rate of decay of deformation with distance
reflects the centroid depth of the chamber. The
amplitude of the deformation is proportional to
the product of the pressure change and volume
of the reservoir. The ratio of horizontal to vertical
displacement is sensitive to chamber shape: sills
are efficient at generating vertical displacement,
while stocks produce more horizontal deformation.
Geodesy alone cannot constrain important parameters
such as chamber volume or pressure; furthermore,
kinematic models have no predictive power. Elastic
response combined with influx proportional to
pressure gradient predicts an exponentially decaying
flux, leading to saw-tooth inflation cycles observed
at some volcanoes. Yet many magmatic systems
exhibit more complex temporal behaviour. Wall rock
adjacent to magma reservoirs cannot behave fully
elastically. Modern conceptual models of magma
chambers also include cumulate and/or mush zones,
with potentially multi-level melt lenses. A viscoelastic
shell surrounding a spherical magma chamber
significantly modifies the predicted time-dependent
response; post-eruptive inflation can occur without
recharge if the magma is sufficiently incompressible
relative to the surrounding crust (Segall P. 2016 J.
Geophys. Res. Solid Earth, 121, 8501–8522). Numerical
calculations confirm this behaviour for both oblate
and prolate ellipsoidal chambers surrounded by
viscoelastic aureoles. Interestingly, the response to
a nearly instantaneous pressure drop during an
explosive eruption can be non-monotonic as the
rock around the chamber relaxes at different rates.
Pressure-dependent recharge of a non-Newtonian
magma in an elastic crust leads to an initially high rate
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of inflation which slows over time; behaviour that has been observed in some magmatic
systems. I close by discussing future challenges in volcano geodesy.

This article is part of the Theo Murphy meeting issue ‘Magma reservoir architecture and
dynamics’.

1. Introduction
Measurements at many volcanoes show that they inflate as magma accumulates in crustal
reservoirs, and then deflate as magma is withdrawn, due to either eruption or intrusion. The
association is so strong that uplift is nearly universally associated with magma accumulation,
e.g. ‘Swelling of a volcano signals that magma has accumulated near the surface’1. Inflation is
thus taken as a possible indicator of an impending eruption. Nevertheless, it should be noted that
some eruptions occur without measurable inflation, and some volcanoes inflate without erupting
(e.g. [1]); the latter is particularly notable at restless silicic calderas.

Volcano deformation has traditionally been interpreted in terms of simplified chamber
geometries, such as spheres, ellipsoids or penny-shaped cracks embedded in elastic half-spaces.
In most cases, the walls of the magma bodies are subject to uniform pressure and vanishing shear
stress. For example, displacements on the Earth’s surface resulting from a pressure change �p in
a spherical magma chamber, in the limit that the magma chamber depth d is substantially larger
than its radius, is

ui(r, t) = 3(1 − ν)
4π

�p(t)V0

μd2
ξi

[(r/d)2 + 1]3/2 , (1.1)

where r is the radial distance from the source on the Earth’s surface, V0 is the volume of the
magma chamber, d is the depth to the chamber centroid, and μ and ν are shear modulus and
Poisson’s ratio. In (1.1), ξz = 1 for vertical displacement, while for radial displacement ξr = r/d.
This is the celebrated Mogi model [2], although this study built on prior work of Sezawa &
Yamakawa (see Origins in [3] for perspective).

From the rate at which the displacement decays with distance, one can determine the source
depth d (figure 1). On the other hand, the magnitude of the displacement scales with the
product �pV0 so that it is not possible to independently determine either the chamber volume
or the pressure change. Higher-order approximations can potentially separate pressure change
and volume [4]; however in practice this has not proven practicable. Note, however, that the
volume change (during the period over which the displacements ui occur) can be estimated from
�V = 3�pV0/4μ.

Comparable analytical and semi-analytical models have been developed for ellipsoidal
chambers [5,6] and penny-shaped sills [7]. These show that prolate ellipsoids are relatively
efficient at generating horizontal displacements relative to the vertical, while sills and oblate
ellipsoids are efficient at generating vertical displacement (figure 1). In summary, geodetic data
generally provide: (i) some information on the source depth and horizontal location (from the
position of peak uplift), (ii) some constraint on source shape, from the ratio of vertical to
horizontal deformation, and (iii) some measure of source strength, proportional to �pV0 (e.g.
[3,8]). It should be noted that sub-vertical dykes have very distinctive deformation patterns and
are relatively easily identified. Of course, these model geometries are highly idealized relative to
what one observes in eroded magma reservoirs.

Traditional geodetic approaches cannot resolve the total magma chamber volume V0, the
pressure acting on the chamber, or much about the properties of the fluid within the chamber. It is
true that simultaneous measurements of deformation and microgravity change have the potential
to place constraints on the density of the fluid phase (e.g. [9–11]). Essentially, the deformation
resolves �V, while gravity change constrains the increment in mass. In practice, however, it

1https://en.wikipedia.org/wiki/Prediction_of_volcanic_activity#Ground_deformation.

https://en.wikipedia.org/wiki/Prediction_of_volcanic_activity#Ground_deformation
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Figure 1. Vertical and radial displacements from ellipsoidal magma chambers. Here a/b is ratio of horizontal to vertical semi-
axes; a/b= 1 corresponding to the spherical Mogi geometry. The y-axis is normalized such that�V/d2 = 1/9. Calculations
based on expressions and code from Cervelli [6].

can be challenging to remove environmental mass changes, notably groundwater in unconfined
aquifers, and one must also account for changes in gravity due to deformation in addition to the
increase (or decrease) of fluid mass (see [3] ch. 9).

Finally, it must be noted that kinematic models have no predictive power, in that they are not
representing evolving physical systems. That is not to say that patterns of behaviour cannot be
used in empirical forecasts; for example, shallowing of deformation might be taken as precursory
to an eruption.

Elastic half-space models are certainly highly idealized relative to the Earth. Considerable
research has been undertaken to include the effects of elastic heterogeneity and realistic
topography (e.g. [12–14]). In addition, for some time it has been recognized that the solid crust
immediately adjacent to a magma chamber cannot deform in a purely elastic fashion due to
the high temperatures expected there; rather the adjacent materials are more likely to respond
in a viscoelastic manner. Furthermore, conceptual models of magma chambers often include
significant zones of cumulates or partially crystalline mush within the chamber, as illustrated
in figure 2. Section 2 describes simple models with viscoelastic aureoles surrounding the fluid
magma reservoir.

(a) Time-dependent recharge
Simple models of melt recharge from depth provide a reasonable approximation to time-
dependent re-pressurization of elastic magma chambers. Conservation of mass of magma m in
the reservoir requires

dm
dt

= d(ρV)
dt

= ρV0(βm + βc)
dp
dt

= qin − qout, (1.2)

where ρ is the magma density in the initial state, V0 is the initial magma chamber volume,
βm is the magma compressibility, βc = (1/V)∂V/∂p is the chamber compressibility and q are mass
flow rates. For a spherical chamber far from the free surface relative to its radius, βc = 3

4 μ,
where μ is the shear modulus. Following an eruption, there is no outflow, qout = 0. A first-order
approximation takes the flux into the chamber to be proportional to the pressure difference,
qin = Ω(p∞ − p), where p∞ is the pressure of a deep (possibly mantle) reservoir assumed to
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Figure 2. Conceptual model of a silicic magma reservoir which is supplied with more mafic melts from below. From Cashman
et al. [15].
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Figure 3. Water tube tilt record at Krafla power plant. Positive tilt is inflation; the sudden drops are either intrusions into the
adjacent rift zone or eruptions (stars). After Sturkell et al. [17].

be maintained constant, and Ω is a conductivity parameter with units kg Pa−1 s−1 (e.g. [16]).
Combining,

p∞ − p(t) = τ
dp
dt

with τ ≡ ρV0(βm + βc)
Ω

, (1.3)

which has the solution
p(t) = [p∞ − (p∞ − p0)]e−t/τ . (1.4)

This characteristic saw-tooth-like re-pressurization is exhibited in several long-term records at
frequently erupting basaltic shield volcanoes, including at Kilauea during the early phases of the
Pu’u O’o eruption, and at Krafla in Iceland, where a sequence of tilt cycles were associated with
eruptions and intrusions during the fissure swarms of the late 1970s and early 1980s (figure 3). In
the latter example, the characteristic time τ appears to be of the order of months.

2. Review of viscoelastic effects
The effects of viscoelastic relaxation on observable deformation have been considered by a
number of authors. Dragoni & Magnanensi [18] derived an analytical result for a spherical
chamber surrounded by a spherical viscoelastic shell; these results formed the basis of the work in
Segall [19] described below. Bonafede et al. [20] found solutions for point sources in a viscoelastic
half-space. Newman et al. [21,22] applied the analytical model of Dragoni & Magnanensi [18], and
finite-element method (FEM) calculations, respectively, to model time-dependent deformation in
Long Valley Caldera. Del Negro et al. [23] and Masterlark et al. [24] applied steady-state thermal
models and temperature-dependent rheology to FEM modelling of Etna and Okmok volcano,
respectively. Yamasaki et al. [25] modelled deformation resulting from sill intrusion in an elastic
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upper crust overlying a Maxwell viscoelastic lower crust and mantle, while Currenti [26] explores
surface deformation and gravity change due to ellipsoidal magma chambers in viscoelastic media.

Some insight into the challenges that viscoelastic effects pose can be gained by considering
the response of time-varying pressure change in a spherical magma chamber (with radius
R1) surrounded by a spherical shell (radius R2) with Maxwell rheology, following Dragoni &
Magnanensi [18]. In this case, the displacements on the surface of the elastic region can be
(approximately) written as a function of radial distance r, and time t,

ui(r, t) = 3(1 − ν)
4π

V0

μd2

[
ξi

(1 + ζ 2)3/2

] {
δp+

0 f (t/tR) +
∫ t

0

dp(t′)
dt′

g
(

t − t′

tR

)
dt′

}
. (2.1)

The term in braces is the pressure change; the geometric dependence is the same as in the Mogi
solution, where ζ = r/d and ξi is the same as in equation (1.1). Here δp+

0 is the pressure change
at t = 0+, and f (t/tR) and g((t − t′)/tR) are dimensionless functions that depend on the relaxation
time, tR, which is given by

tR = 3η(1 − ν)
μ(1 + ν)

(
R2

R1

)3
, (2.2)

where η is the viscosity of the shell. For this geometry, the relaxation time depends on the ratio
of the radii cubed as well as the intrinsic Maxwell time η/μ [18]. Equation (2.1) involves a
convolution of the pressure rate history with the relaxation function g((t − t′)/tR). Solving (2.1)
for the pressure rate history from observed displacements is thus a deconvolution. The difficulty
is that, without knowing the relaxation time (that is, viscosity), one cannot do the deconvolution
to solve for the pressure history. The challenge in constraining wall rock viscosity is that it
depends not only on lithology and temperature but also on grain size (for diffusion creep)
and concentration of intra-crystalline water within the dominant silicate phases. For reference,
viscosities ranging from 1015 to 1019 Pa s, and standard crustal shear moduli (3 × 1010 Pa) lead to
characteristic times of from 10−3 to 10 years.

Some progress can be made by considering the response to a sudden pressure drop during an
explosive eruption (figure 4), which basically yields the impulse response of the crust. I previously
argued [19] that two things can happen following the pressure drop: First, the sudden change in
pressure will initiate a viscoelastic response of the crust surrounding the chamber. Secondly, the
reduced pressure within the magma chamber will tend to drive increased flux into the chamber
from below.

The model is illustrated in figure 4. The magma chamber is fed by a deep source that is
assumed to be sustained at constant pressure. Pressure p∞ is the chamber pressure in magma-
static equilibrium with the source region, i.e. pdeep = p∞ + ρgH, where H is the vertical distance
between the top of the source region and the chamber centroid. Prior to the eruption, the magma
chamber may be inflating such that p(t = 0−) ≡ p−

0 ≤ p∞.
During an eruption, mass is evacuated from the chamber (assumed instantaneously) such

that the pressure drops to p−
0 + δp(t = 0+) ≡ p−

0 + δp+
0 , where δp+

0 < 0. The shell surrounding the
magma chamber initially responds elastically, but with time magma flows from the deep source
into the chamber, and the viscoelastic shell relaxes. I assume for simplicity that mass flux into
the chamber is proportional to the pressure gradient Ω(p∞ − p) as in the analysis for the elastic
system leading to equation (1.3).

Segall [19] gives an approximate analytical solution for the surface displacements ui, due to a
chamber of radius R1 at depth d, with viscoelastic aureole of radius R2, as

ui(z = 0, r, t) = 3(1 − ν)
4π

V0

μd2

[
ξi

(1 + ζ 2)3/2

]
{ f1 + f2es1t + f3es2t}, (2.3)

where fj, j = 1, 2, 3, are functions of �p0 ≡ p∞ − p−
0 , (R2/R1)3, τ , tR, s1, s2, δp+

0 and given in Segall
[19]. Recall that τ is the characteristic time for elastic refilling, as defined in (1.3). The reciprocal
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Figure4. Schematic ofmagmasystem. (a) Pre-eruptive state,withmagmachamberpressurep−0 anddeep reservoir at pressure
pdeep = p∞ + ρgH. (b) Co-eruptive state, mass δm is erupted causing the chamber pressure to drop to p−0 + δp(t = 0+).
The viscoelastic shell surroundingmagma chamber responds elastically. (c) Post-eruptive state, magma flows into the chamber
from deep reservoir, viscoelastic shell deforms, both contributing to a time-dependent pressure p−0 + δp(t). After Segall [19].

characteristic times, s1 and s2, are the roots of a quadratic,

s1,2 = − t−1
R (1 + Bα) + τ−1

2
± 1

2

√
(t−1

R (1 + Bα) + τ−1)2 − 4τ−1t−1
R , (2.4)

where

α = 3(1 − ν)
(1 + ν)

[(
R2

R1

)3
− 1

]
(2.5)

and

B = βc

βm + βc
. (2.6)

Recall that βm is the magma compressibility, while βc is the chamber compressibility. Equation
(2.4) reveals that the displacement history depends on the relaxation time tR and the characteristic
refilling time τ . In the no-recharge limit, the elastic refilling time is infinite, tR/τ → 0, and the single
non-zero root in (2.4) is −(1 + Bα)/tR. In the opposite limit, the Maxwell time is infinite, tR/τ → ∞,
and the single non-zero root in (2.4) is τ , the elastic refilling time. Other than in these limiting
cases, the characteristic relaxation times in (2.3) are not equal to either tR or τ .

(a) Inflation without recharge
A rather surprising result of this analysis was the recognition that the model predicts that there
can be partial re-inflation following an eruption with no recharge into the system, if the magma is
sufficiently incompressible. This contrasts with general beliefs as exemplified by the quote from
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Figure 5. No-recharge limit. (a) Normalized chamber pressure; (b) normalized displacement in the elastic region. For infinitely
compressible magma, the chamber pressure is constant following eruption and the co-eruption subsidence continues. For an
incompressible magma, the chamber pressure partially recovers and there is partial re-inflation following the eruption, even
though there is no flow into the chamber. For B = 5

9 , there is no post-eruptive deformation even though the pressure is
increasing. Here ν = 0.25, R2/R1 = 1.2. After Segall [19].

Wikipedia in the Introduction. In particular, the ratio of the fully relaxed response (t → ∞) to the
instantaneous elastic response is given by

u(t → ∞)
u(t = 0)

= (R2/R1)3

1 + [3(1 − ν)/(1 + ν)]B[(R2/R1)3 − 1]
. (2.7)

Whether the final subsidence exceeds the co-eruptive subsidence depends on whether the ratio in
(2.7) is greater or less than 1. From (2.7), post-eruptive deflation occurs when B < (1 + ν)/3(1 − ν);
for ν = 1

4 this ratio is 5
9 ≈ 0.56. For larger values of B (relatively incompressible magmas), the

final deflation is less than the immediate post-eruptive deflation; that is, the co-eruptive deflation
partially recovers. Note also that for ν = 0.5 and B = 1, u(t → ∞) = u(t = 0); in this case both
the magma and the surrounding are incompressible, and there is no change in volume as the
viscoelastic shell relaxes.

The limiting behaviour is illustrated in figure 5. Note that in the no-recharge limit there is only
one time constant. It depends only on tR; without recharge, there is no dependence on τ .

Because this analysis is for a very idealized geometry of a spherical chamber with a spherical
viscoelastic shell, it is reasonable to ask whether inflation without mass injection is general,
i.e. whether it can occur for more realistic magma chamber geometries? I test this using FEM
calculations in §3. Before that, I review the response of the spherical system with recharge.
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(b) Response with recharge
It is interesting to determine whether the immediate response following an explosive eruption
is inflationary or deflationary, something that would be easy to identify with field data. Segall
[19] derived an expression for the boundary between the deflationary and inflationary fields.
Assuming relatively low rate of pre-eruptive inflation such that �p0/δp+

0 � 1, the boundary
between inflating and deflating scenarios is given by

tR

τ
=

[(
R2

R1

)3
− 1

] [
1 − 3(1 − ν)

(1 + ν)
B
]

. (2.8)

Examples are shown in figure 6, for relatively small B; that is, a relatively compressible magma.
For a given value of B, we find that for large tR/τ the response approaches the elastic limit, as
expected, and the immediate response is inflationary. By contrast, for small tR/τ rapid stress
relaxation causes a deflation before recharge reverses the trend and causes inflation.

Figure 7 illustrates equation (2.8) graphically, separating fields in which the instantaneous
post-eruptive response is inflationary versus deflationary as functions of tR/τ and B for different
ratios of outer to inner radii. For a given ratio R2/R1, any combination of tR/τ and B above the
line exhibits immediate post-eruptive inflation; tR/τ = 0 corresponds to the no-recharge limit.
The predictions from this plot can be compared with the numerical results shown in figure 6.
For R2/R1 = 1.5 (green curve) and B = 0.2 the boundary between inflationary and deflationary
responses occurs at tR/τ = 1.5. Figure 6 shows that for this ratio of tR/τ the inflation rate indeed
vanishes at t = 0, as predicted. Larger values of tR/τ move into the inflationary field, while smaller
values exhibit post-eruptive deflation, as illustrated in figure 6.
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Given GPS time series it should be possible to constrain parameters of interest, including B
and tR/τ . In this approach, we leverage knowledge of the form of the pressure history, namely a
step decrease in pressure during the eruption, to remove some ambiguity in the deconvolution
problem discussed above. However, it must be recognized that this model is greatly simplified in
assuming a single shell with spatially uniform viscosity. Furthermore, other processes can cause
deviations from exponential decay in flux as described in §4. Finally, many magmatic systems
exhibit transient, episodic inflation, indicating that other, currently poorly understood, processes
are at play as discussed briefly in §5.

3. Viscoelastic effects with generalized chamber geometries
Because the analytical results in the previous section are so idealized, it is important to verify
whether similar behaviour is observed with different chamber geometries. Motivated by the
conceptual model of a magma chamber by Cashman et al. [15], as in figure 2, I consider a magma
reservoir with an oblate spheroidal geometry. The viscoelastic aureole is also an ellipsoid but is
offset so that the viscoelastic region is thicker on the bottom, perhaps representing a cumulate
zone (figure 8). Calculations are performed using the finite-element code COMSOL. A pressure
drop corresponding to a short-lived eruption is imposed at t = 0; following that, the mass of fluid
within the chamber is held fixed, corresponding to the no-recharge limit discussed above.

As expected from the spherical case, for relatively incompressible magmas (B > 0.5) there is
partial re-inflation, even with no mass addition within the reservoir (figure 8a). Interestingly, for
intermediate values of compressibility B, the behaviour is non-monotonic. That is, there may be
some post-eruptive deflation followed by re-inflation, with slight differences between the vertical
and radial components. The reason for this is that stresses within the viscoelastic aureole relax
at different rates in different locations. This is seen in figure 8b, which shows the maximum
deviatoric stress after one relaxation time. The shear stresses above the reservoir have mostly
relaxed, concentrating stress at the lateral edge of the chamber. It is worth emphasizing that the
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non-monotonic surface deformation, including partial re-inflation, results from an instantaneous
pressure drop and no mass flow into the magma chamber.

Next, I consider a prolate spheroid as illustrated in figure 9. As in the oblate geometry, for
sufficiently large B there is partial re-inflation, even though the mass of magma is held constant.
For the radial displacement at z = 0, r = d, this occurs for B > 0.6 and is smaller in magnitude than
in the oblate case, although it should be noted that the viscoelastic aureole is considerably thinner
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in this calculation. The vertical displacement directly above the chamber is more complex; for
B > 0.6 there is some inflation, followed by deflation. Again, the non-monotonicity is striking.

Whether or not post-eruptive inflation can occur without recharge depends critically on
B, which in turn depends on the relative compressibility of the magma and elastic chamber
(equation (2.6)). The latter depends on crustal stiffness (shear modulus), and importantly the
chamber shape and distance from the free surface; it is difficult to compute analytically. Figure 10
shows B as a function of magma compressibility and aspect ratio computed numerically following
[27]. Comparing to figures 9 and 8 suggests that, especially for oblate chambers, relative degassed
magmas could be sufficiently incompressible to cause post-eruptive inflation without mass influx.

4. Recharge with nonlinear magma rheology
The viscoelastic results discussed above show that surface deformation resulting from a rapid
de-pressurization can have complex time dependence. In the simple analytical model for a
spherical chamber and aureole, the response is the sum of two exponential decays. For sufficiently
low viscosity, this can yield a short-term response, dominated by viscoelastic relaxation, and a
longer-term response, dominated by time-dependent recharge. Such behaviour has been observed
for example at Grímsvötn volcano in Iceland. Viscoelastic response, however, is not the only
mechanism that could give rise to such behaviour. Reverso et al. [28] suggest that a second,
deep magma chamber could give rise to the observed time dependence. Got et al. [29] argue
for the effects of increasing damage around the chamber, although this would require a large and
widespread decrease in elastic stiffness. Another possible mechanism is nonlinearity in recharge.

Consider recharge with power-law magma rheology: γ̇ = cτn, where γ̇ and τ are the shear
strain rate and maximum shear stress, respectively, c is a constant, and n is the power-law
exponent. For a vertical circular conduit with radius R, integration of the equilibrium equation
in the z-direction yields σrz(r) = (r/R)σwall, where σwall is the shear stress acting on the conduit
wall. Combining this with the above constitutive law to derive the velocity distribution, and then
integrating to obtain the mass flux, yields

qin = ρ0πcR3

n + 3

(
R
2

dp
dz

)n
. (4.1)
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Thus, the governing ordinary differential equation for chamber pressure, combining (4.1) with
mass conservation (1.2), is

dp
dt

= Ω∗(p∞ − p)n, (4.2)

where Ω∗ is a modified flux parameter appropriate for the nonlinear rheology. Taking the pressure
gradient to be (p∞ − p)/L, one obtains

Ω∗ = πcR3

(n + 3)V0(βm + βc)

(
R
2L

)n
. (4.3)

Equation (4.2) can be integrated exactly to yield

δp(t) = �p0 − [(n − 1)Ω∗t + (�p0 − δp+
0 )1−n]1/(1−n), n 
= 1. (4.4)

Results are shown in figure 11. For a Newtonian (n = 1) magma, the pressure recovery is
exponential (equation (1.4)). For shear-thinning fluids (n > 1), the recharge starts rapidly but then
slows with time as the pressure gradient declines. This behaviour is qualitatively similar to that
observed at Grímsvötn volcano.

5. Future challenges
Future work will be required to address expected deformation signals from more complex multi-
level models motivated by geologic and geophysical observations (e.g. [15]). In particular, it
will be important to understand to what extent surface deformations are sensitive to processes
below shallow crustal reservoirs. In many, if not most, cases volcanic inflation is not accompanied
by sensible deflation associated with deeper sources. Yet, mass must be conserved between all
sources and sinks. The absence of observable deflation may be because sources are too deep or
distributed to produce clear deformation signals, or it may in part result from pressure-dependent
compressibility of magmas (e.g. [30]). Nevertheless, being able to geodetically image magma
source regions would be a significant step forward in our understanding of how magmatic
systems work.

Simple models predict time-dependent pressurization of crustal magma chambers (e.g.
equation (1.4)). Consideration of viscoelastic relaxation reveals the potential for more complex
and even non-monotonic behaviour (figure 6). At the same time, many volcanoes exhibit
transient, episodic inflation and, in some cases, these events are associated with increased flux
of magma from mantle sources, as evidenced by increased CO2 flux [31]. Are these episodic
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inflations caused by dykes depositing melt into crustal reservoirs? Or by nonlinear behaviour in
long-lived conduits? The rate of influx, qin in (1.2), is almost certainly not constant, even though
this is sometimes assumed for mathematical convenience.

One approach that we can expect to gain prominence is the integration of independent
datasets with geodetic data to provide tighter constraints on parameters of interest (e.g. [32]).
Of course, such efforts face their own challenges: seismic tomography potentially provides
information about magma chamber geometry; however seismic travel times or waveform fitting
are generally interpreted in terms of three-dimensional distribution of elastic wave speeds;
translating that information into melt volume fraction is challenging. Nevertheless, some studies
have integrated petrologic and seismic data with satellite geodetic data to better constrain
magmatic conditions (e.g. [33]). Kilbride et al. [34] combine InSAR observations of deflation with
observations of atmospheric sulfur loading and thermodynamic models to better understand the
nature of exsolved volatiles within magma reservoirs. Volcano-tectonic earthquakes represent
brittle response of the crust to the same processes that cause measurable surface deformation,
and thus should be amenable to joint analysis. For example, Segall et al. [35] used the model
of Dieterich [36] to propose methods for jointly analysing deformation and seismicity data
recorded during dyke injections. The limitations of volcano geodesy alone to constrain important
properties of magma chambers suggests that integration with complementary datasets will grow
in importance in coming years.
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