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Repressurization following eruption from a magma chamber
with a viscoelastic aureole
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Abstract I analyze an approximate solution for spherical magma chambers (radius R1) surrounded by
Maxwell viscoelastic shells (radius R2) in elastic half-spaces following a sudden decrease in pressure. Mass
flux into the chamber is proportional to the pressure difference between a deep source and chamber,
p∞ − p(t). Solutions depend on R2∕R1,  ≡ 𝛽c∕(𝛽m + 𝛽c), where 𝛽m, 𝛽c are magma and chamber
compressibilities, tR is the relaxation time, and 𝜏 is the recharge time for the elastic system. Without recharge
the system exhibits either posteruptive deflation or, for incompressible magmas, partial reinflation. More
generally, immediate posteruptive inflation is favored by large , tR∕𝜏 and small R2∕R1. With short tR

and large  the time for magma chamber pressure to recover increases significantly. Posteruptive creep
increases the chamber pressure, decreasing the pressure gradient driving recharge, delaying pressure
recovery. Following eruption the hoop stresses, which are initially compressive, relax toward the radial
stress causing them to go through a local (relative tension) maximum. The magma pressure in excess of the
dike normal compression at the chamber wall can recover to preeruptive values well before the chamber
pressure or erupted mass recovers. This suggests that dikes could nucleate at the chamber margin
well before sufficient pressure has recovered to drive them far from the chamber. For some parameters
coeruptive deflation has not fully recovered when the magma overpressure relative to hoop stress in the
elastic region is restored to preeruptive values, a condition assumed to be sufficient for eruption.

1. Introduction

Most analyses of volcano deformation assume a pressurized cavity, of some shape, in an elastic half-space
[Mogi, 1958; Yang et al., 1988; Fialko et al., 2001; Dzurisin, 2003; Segall, 2013]. Yet the crust surrounding a
long-lived magma chamber is subjected to temperatures well above the point where it responds elastically.
Dragoni and Magnanensi [1989] first analyzed the response of a spherical magma chamber surrounded by
a Maxwell viscoelastic shell in an otherwise elastic full space. Their analysis reveals that following a step
increase in pressure within the magma chamber, the stresses within the viscoelastic shell relax, transmitting
the chamber pressure to the outer boundary of the viscoelastic shell. The displacements in the outer, elastic
region thus increase monotonically. The instantaneous, elastic response is that of a pressurized chamber in a
fully elastic region with inner radius R1 (Figure 1), while the fully relaxed (infinite time) response in the outer
region is equivalent to a spherical magma chamber with radius of the viscoelastic shell, R2 > R1. Segall [2010,
section 7.6] extended the Dragoni and Magnanensi [1989] result to an approximate half-space solution,
following the approach of McTigue [1987] for a pressurized spherical cavity in an elastic half-space. The approx-
imation is expected to be accurate in the limit that the outer radius R2 is small compared to the depth of the
chamber center, d, although McTigue [1987] showed that in the elastic case the error is small for modest ratios
of chamber radius to depth.

The first-order correction for the free surface increases the displacements on that plane, relative to the
full-space solution by a factor of 4(1− 𝜈), where 𝜈 is Poisson’s ratio [McTigue, 1987]. Newman et al. [2001], who
developed a Finite Element Model (FEM) of a spherical chamber surrounded by a viscoelastic shell in an other-
wise elastic half-space, noted that for 𝜈 = 0.25, the displacements on the free surface are a factor of 3 greater
than the full-space equivalent, exactly as predicted by the first-order correction 4(1− 𝜈). Newman et al. [2006]
extended the analysis to a prolate ellipsoidal chamber with a surrounding viscoelastic shell and estimated
plausible pressure histories to fit geodetic observations at Long Valley caldera.

For a linear viscoelastic medium the surface deformation can be written in terms of a convolution of the
magma chamber pressure-rate history with viscoelastic response functions (Appendix A, equation (A22)).
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Figure 1. Geometry of a spherical magma chamber with a Maxwell viscoelastic shell. R1 is the radius of the magma
chamber. R2 is the radius of the viscoelastic shell. Elastic properties are assumed to be the same in both regions, for
simplicity.

To deconvolve the viscoelastic response and determine the magma chamber pressure history requires a
priori knowledge of the rheological properties of the viscoelastic crust surrounding the chamber. One
approach has been to develop thermal models of the crust around the magma chamber and estimate
temperature-dependent effective viscosities through rheological models appropriate for the given litholo-
gies. However, the requisite rheological parameters and their dependence on temperature are functions of
composition, grain size, activity of water, and strain rate and are thus imperfectly known. Del Negro et al. [2009]
developed a FEM model of a viscoelastic shell surrounding a spherical magma chamber, in which the viscos-
ity was determined by a steady state thermal model. The viscosity of the crust within the shell depends on
temperature, although the thickness of the shell was specified. Fixing rheological parameters, they find vis-
cosities ranging from 𝜂 = 1015 Pa s to 1020 Pa s for magma chamber temperatures of T = 1000∘K and from
1013 Pa s to 1017 Pa s for T = 1500∘K. For a shear modulus of 𝜇 = 1010 Pa this leads to characteristic relaxation
times 𝜂∕𝜇 that range from 103 to 1010 s, highlighting the difficulty of constraining the viscosity a priori. In
comparison, Newman et al. [2001] suggest that rhyolites at near solidus temperatures (670∘C) have a viscosity
of 𝜂 = 1016 Pa s, while for quartz-bearing country rock at temperatures of 350∘C 𝜂 ranges between 1017 Pa s
and 1019 Pa s.

Masterlark et al. [2010] employed a model similar to that of Del Negro et al. [2009] to study deformation accom-
panying a months-long eruption of Okmok volcano in Alaska. They developed a steady state thermal model
with magma reservoir maintained at 1200∘C and assumed a brittle ductile transition at 750∘C, such that
behavior is assumed to be elastic for T < 750∘C. This leads to a ratio of outer radius to inner radius, R2∕R1,
of 1.5. They assumed a constant flux of magma out of the chamber during the eruption and solve for the
flux and viscosity of the shell that best fits the available geodetic data, yielding an estimated viscosity of
7.5 × 1016 Pa s.

In this paper, I explore analytically the response of the crust to rapid deflation accompanying a short-lived
eruption. The advantage of this scenario is that the sudden drop in pressure acts as an impulse that can be
used to better resolve the time-dependent response of the medium surrounding the magma chamber, in
contrast to inflationary periods where the magma chamber pressure history is unknown. Following the erup-
tion two effects come in to play: (1) viscoelastic relaxation of the rocks surrounding the chamber which, if the
chamber were held at fixed pressure, causes continued deflation, and (2) repressurization due to influx of new
magma from a deeper source, which causes inflation. It would appear that these effects lead to posteruptive
signals of opposite sign. However, I will show that if the magma compressibility is sufficiently low, viscous
creep of rock surrounding the chamber causes the pressure to increase, even if there is no recharge into the
chamber. Perhaps, counter intuitively, this can lead to posteruptive inflation even in the absence of influx of
new magma.

It has also been suggested that viscoelastic relaxation acts to surpress diking from the magma chamber as
melt accumulates, allowing much larger magma reservoirs to develop [Jellinek and DePaolo, 2003; Karlstrom
et al., 2010]. Analysis of the growth of super volcano sized magma chambers is not accessible with the small
strain model considered here, which does not include stoping, wall-rock melting, or finite deformations.
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It is further assumed here that magma chamber recharge, as well as viscous relaxation, occurs on timescales
much shorter than the timescales over which the thermal field evolves. Nevertheless, it is informative to con-
sider the effect of viscous relaxation on the stress field surrounding the magma chamber and the implications
for dikes exiting the chamber. I find that for short relaxation times compared to the characteristic time for
magma recharge the hoop stresses within the viscoelastic shell actually favor dike opening well before the
magma chamber pressure recovers.

2. Method

The model is illustrated schematically in Figure 2. The magma chamber is fed by a deep source that is assumed
to be sustained at constant pressure. The magma pressure at the centroid of the chamber is p. Label p∞ the
chamber pressure in magmastatic equilibrium with the source region, i.e., pdeep = p∞ + 𝜌gH, where 𝜌 is the
magma density and H is the vertical distance between the source region and the chamber centroid. Prior to
the eruption, the magma chamber may be inflating such that p(t = 0−) ≡ p−

0 ≤ p∞.

I assume that stresses in the initial, preeruptive, state (Figure 2a) are in quasi-static equilibrium with grav-
itational body forces and the pressure of magma within the chamber, p−

0 . Deviatoric stresses within the
viscoelastic shell surrounding the magma chamber may be partially or fully relaxed depending on the Maxwell
relaxation time relative to the time since the previous eruption. Stress perturbations and displacements are
measured relative to this initial, equilibrated state. This procedure neglects higher-order contributions to
the equilibrium equations due to changes in density, perturbations in the gravitational potential, and the
advected prestress, which are expected to be small [e.g., Dahlen and Tromp, 1998; Segall, 2010, Chapter 9].

During an eruption mass is evacuated from the chamber (assumed instantaneously) such that the pressure
drops to p−

0 + 𝛿p(t = 0+), where 𝛿p(t = 0+) < 0 is proportional to the erupted mass (see below). The shell
surrounding the magma chamber initially responds elastically, but with time two things happen: magma flows
from the deep source into the chamber, and the viscoelastic shell relaxes. Treating the magma chamber as a
lumped parameter, conservation of mass, m, (assuming small changes) requires

dm
dt

= d(𝜌V)
dt

= 𝜌V𝛽m
dp
dt

+ 𝜌
dV
dt

= qin − qout, (1)

where 𝜌 is the magma density in the initial state, V is the initial magma chamber volume, 𝛽m = (1∕𝜌)𝜕𝜌∕𝜕p is
the magma compressibility, and q are mass flow rates. Following the eruption, there is no outflow, such that
qout = 0. I assume the flux into the chamber is proportional to the pressure difference, qin = Ω(p∞−p), where
Ω is a conductivity parameter with units kg Pa−1s−1 [e.g., Mastin et al., 2008]. Combining

Ω(p∞ − p) = 𝜌

(
V𝛽m

dp
dt

+ dV
dt

)
. (2)

The magma chamber pressure p can be written as

p(t) = p−
0 + 𝛿p(t) (3)

where p−
0 is the chamber pressure at t = 0− immediately prior to the eruption, and 𝛿p(t) is the change in

pressure, both during and following the eruption. Substituting (3) into (2) yields

Ω
[

p∞ − p−
0 − 𝛿p(t)

]
= Ω[Δp0 − 𝛿p(t)] = 𝜌

(
V𝛽m

dp
dt

+ dV
dt

)
, (4)

where Δp0 ≡ p∞ − p−
0 .

For elastic deformation of the surrounding crust the volume change of the chamber is proportional to the
pressure change, dV∕dt = V𝛽cdp∕dt, where 𝛽c is an effective chamber compressibility. For the special case of
a spherical cavity far from the Earth’s surface

𝛽c =
3

4𝜇
(5)

[e.g., Segall, 2010, equation (7.13)], such that (4) reduces to

Δp0 − 𝛿p(t) = 𝜏
d𝛿p
dt

with 𝜏 ≡ 𝜌V(𝛽m + 𝛽c)
Ω

. (6)
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Figure 2. Schematic of magma system. (a) Preeruptive state, with magma chamber pressure p−0 and deep reservoir at pressure pdeep = p∞ + 𝜌gH. (b) Coeruptive
state, mass 𝛿m is erupted causing the chamber pressure to drop to p−0 + 𝛿p(t = 0+). Viscoelastic shell surrounding magma chamber responds elastically.
(c) Posteruptive state, magma flows into the chamber from deep reservoir, viscoelastic shell deforms, both contributing to a time-dependent pressure p−0 + 𝛿p(t).

ForΔp0−𝛿p> 0 magma flows into the chamber causing the pressure to increase, with a characteristic refilling
time, 𝜏 . Flow into the magma chamber ceases when 𝛿p = Δp0 = p∞ − p−

0 .

In the viscoelastic case the volume of the magma chamber changes due both to creep closure and refilling.
Neglecting free-surface effects on the displacements of the chamber wall, the rate of chamber volume change
is approximately

dV
dt

≃ 4𝜋R2
1

d
dt

ur(r = R1), (7)

where ur is the radial displacement, and R1 is the magma chamber radius (Figure 1). Substituting (7) into (4)
yields

Ω[Δp0 − 𝛿p(t)] = 𝜌

[
V𝛽m

dp
dt

+ 4𝜋R2
1

d
dt

ur(r = R1)
]
. (8)

The solution to (8) is given in Appendix A using Laplace transform methods. This yields the change in magma
chamber pressure as a function of time

𝛿p(t) =
Δp0t−1

R

𝜏s1s2
+

(
Δp0 + s1𝜏𝛿p+

0

) (
s1 + t−1

R

)
s1𝜏(s1 − s2)

es1t +
(
Δp0 + s2𝜏𝛿p+

0

) (
s2 + t−1

R

)
s2𝜏(s2 − s1)

es2t, (9)
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where the roots s1, s2 are given by

s1,2 = −
t−1

R (1 + 𝛼) + 𝜏−1

2
± 1

2

√(
t−1

R (1 + 𝛼) + 𝜏−1
)2 − 4𝜏−1t−1

R (10)

and

tR = 3𝜂(1 − 𝜈)
𝜇(1 + 𝜈)

(
R2

R1

)3

(11)

𝛼 = 3(1 − 𝜈)
(1 + 𝜈)

[(
R2

R1

)3

− 1

]
(12)

 =
𝛽c

𝛽m + 𝛽c
. (13)

Here tR is the relaxation time for the system [Dragoni and Magnanensi, 1989], and  is a dimensionless ratio
of magma and chamber compressibilities. Assuming Poisson’s ratio is known, the fundamental unknown
parameters are , 𝜂∕𝜇, R2∕R1, and 𝜏 , or alternatively, , R2∕R1, tR, and 𝜏 .

In Appendix A, the limits of (9) are verified to be 𝛿p(t = 0+) = 𝛿p+
0 and 𝛿p(t → ∞) = Δp0, the latter corre-

sponding to p(t → ∞) = p∞ such that recharge ceases. I also show there that in the limit of infinite relaxation
time, t−1

R → 0, and equation (9) reduces to the elastic case of a chamber repressurizing due to magma influx.
In this limit

𝛿pe(t) = Δp0 +
(
𝛿p+

0 − Δp0

)
e−t∕𝜏 , (14)

which is immediately seen to be the solution to (6). The other limit, of no magma recharge, 𝜏−1 → 0, is dis-
cussed below. First, consider the displacements at the free surface. Following the derivation in Appendix A,
the vertical displacements on the free surface can be approximated by

uz(z = 0, t) =
(1 − 𝜈)R3

1

𝜇d2

{
Δp0(R2∕R1)3

𝜏s1s2tR
+

(
Δp0 + s1𝜏𝛿p+

0

) [
s1 + t−1

R (R2∕R1)3
]

s1𝜏(s1 − s2)
es1t

+
(
Δp0 + s2𝜏𝛿p+

0

) [
s2 + t−1

R (R2∕R1)3
]

s2𝜏(s2 − s1)
es2t

}[
1

(1 + 𝜁2)3∕2

]
.

(15)

Here 𝜁 = h∕d is the radial distance from the center of the source, h, normalized by the source depth, d.
(Note that I have omitted the superscript (2), denoting the elastic region 2, for notational simplicity.) As dis-
cussed in Appendix A, the approximation should be accurate as long as the depth of the magma chamber
centroid is reasonably large compared to the radius of the viscoelastic shell, R2. This parallels the well-known
Mogi solution for a spherical magma chamber in a fully elastic half-space that is accurate as long as the cen-
troid depth is small compared to the chamber radius R1. The radial horizontal displacements are found by
replacing the factor 1∕(1 + 𝜁2)3∕2 with 𝜁∕(1 + 𝜁2)3∕2 [e.g., Segall, 2010, chapter 7]. Appendix A verifies that
the instantaneous displacements at t = 0 are proportional to 𝛿p+

0 R3
1, while at t → ∞ the displacements are

proportional to Δp0R3
2.

Equation (15) shows that the surface deformation is the sum of exponentials with two time constants, cor-
responding to −1∕s1 and −1∕s2. These time constants arise from the interaction of viscous relaxation, with
characteristic time tR and magma recharge, with characteristic time 𝜏 , although from equation (10),−1∕s1 and
−1∕s2 generally do not correspond individually to these times. (The exception, as discussed in Appendix A,
is for  = 0 where the roots s1,2 correspond to −𝜏−1 and −t−1

R .) Interestingly, several studies have shown
that deformation following some eruptions requires two distinct time constants [Nooner and Chadwick, 2009;
Reverso et al., 2014]. Additional analysis will be required to determine whether these observations are sensibly
described by the simple model presented here.
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3. Surface Deformation

If the eruption is of sufficiently short duration the response will be completely elastic. In this case the pressure
change due to eruption of mass 𝛿m is, from (1) and the definition of 𝛽c,

𝛿p+
0 = 𝛿m

𝜌V(𝛽m + 𝛽c)
. (16)

𝛿m is negative, such that there is an instantaneous pressure drop; however, pressure may partly recover with
time as the surroundings relax and the chamber squeezes inward.

3.1. No Recharge Limit
An interesting limiting case is when there is no influx into the magma chamber. In the limit 𝜏−1 → 0,
equation (A15) in Appendix A can be inverted analytically, yielding

𝛿p(t)lim 𝜏−1→0 =
𝛿p+

0

1 + 𝛼
{

1 + 𝛼 exp
[
−(1 + 𝛼)t∕tR

]}
. (17)

Note that the characteristic time for the no recharge limit is tR∕(1 + 𝛼) and thus depends on relative
compressibility and size of the viscoelastic shell as well as intrinsic Maxwell time 𝜂∕𝜇.

Inversion of (A18) in Appendix A yields the displacements

uz(z = 0, t)lim 𝜏−1→0 =
(1 − 𝜈)R3

1

𝜇d2

𝛿p+
0

1 + 𝛼
{(

R2

R1

)3

−

[(
R2

R1

)3

− 1 − 𝛼
]

exp
[
−(1 + 𝛼)t∕tR

]}

×
[

1
(1 + 𝜁2)3∕2

]
.

(18)

The instantaneous displacement due to the eruption is

uz(z = 0, t = 0)lim 𝜏−1→0 =
(1 − 𝜈)𝛿p+

0 R3
1

𝜇d2

[
1

(1 + 𝜁2)3∕2

]
, (19)

which is of course the Mogi [1958] solution for a change in pressure 𝛿p+
0 . The fully relaxed, infinite time,

response is

uz(z = 0, t → ∞)lim 𝜏−1→0 =
(1 − 𝜈)𝛿p+

0 R3
1

𝜇d2

(R2∕R1)3

1 + 𝛼
[

1
(1 + 𝜁2)3∕2

]
. (20)

The fully relaxed response (20) also has the same form as the Mogi solution; however, the amplitude of the
displacement is modified. From equations (19) and (20) the ratio of displacement at infinite to zero time is

u(t → ∞)
u(t = 0)

=
(R2∕R1)3

1 + 𝛼 =
(R2∕R1)3

1 + 3(1−𝜈)
(1+𝜈)


[(

R2

R1

)3
− 1

] , (21)

which is illustrated in Figure 3. Values greater than one indicate continued posteruptive subsidence, while val-
ues less than one indicate posteruptive inflation. Highly compressible magma favors continued posteruption
subsidence, while the reverse is true for relatively incompressible magmas. The amplitude of the posteruptive
changes increases with increasing R2∕R1 in both cases.

Whether the final subsidence exceeds the coeruptive subsidence depends on whether the ratio in (21) is
greater or less than 1. From (21) posteruptive deflation occurs when  < (1 + 𝜈)∕3(1 − 𝜈); for 𝜈 = 1∕4 this
ratio is 5∕9 ≈ 0.56, as seen in Figure 3. For larger values of  (relatively incompressible magmas) the final dis-
placement is less than the immediate posteruptive deflation, that is the coeruptive deflation partially recovers.
Notice also that for 𝜈 = 0.5, and = 1, u(t → ∞) = u(t = 0); in this case both the magma and the surrounding
are incompressible, and there is no change in volume as the viscoelastic shell relaxes.

These results can be understood by considering the effect of magma compressibility. For highly compressible
magma ( → 0) chamber pressure remains constant, and we approach the limit in Dragoni and Magnanensi
[1989]. As the viscous shell relaxes the pressure boundary condition is transmitted to the outer boundary R2,
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Figure 3. Amplitude of the final displacement relative to the instantaneous posteruptive displacement as a function of
relative compressibility and the relative radius of the viscoelastic shell, in the absence of recharge. Values less than 1.0
indicate partial reinflation, whereas values greater than 1.0 indicate continued deflation. 𝜈 = 0.25.

Figure 4. No recharge limit. (left) Normalized chamber pressure. (right) Normalized displacement on inner (dashed) and
outer (solid) radii of the viscoelastic shell. For infinitely compressible magma, the chamber pressure is constant following
eruption and the coeruption subsidence continues. For an incompressible magma, the chamber pressure partially
recovers and there is partial reinflation following the eruption. 𝜈 = 0.25, R2∕R1 = 1.2.
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Figure 5. Boundary between instantaneous posteruptive inflation and deflation for different values of R2∕R1. Values to
the right and above the line experience immediate posteruptive inflation. The limit of tR∕𝜏 = 0 corresponds to the no
recharge limit.

which has the effect of increasing the amplitude of the coeruptive deflation. For less compressible magmas
the pressure increases as the shell creeps inward; in the limit  → 1, the magma volume is fixed and the shell
can only relax outward. In general, the posteruptive displacements are a combination of these two effects:
(a) the change in chamber pressure and (b) the relaxation of the surrounding viscoelastic shell. In the  → 0
limit the latter effect dominates and there is continued deflation following the eruption. In the  → 1 limit
the pressure recovery dominates and there is partial posteruptive rebound.

This limiting behavior is illustrated in Figure 4. For the infinitely compressible magma,  = 0, the pressure
is constant, and the system experiences posteruptive deflation. As the shear stresses in the shell relax the
radial stress becomes uniform; the resulting extensional strain causes the inner boundary to displace more
than the outer boundary. For incompressible magma,  = 1, the pressure partially recovers and the sys-
tem experiences posteruptive inflation, even without recharge into the magma chamber. In this case, the
inner boundary is fixed and relaxation causes the outer boundary to displace outward. For the special case of
 = (1 + 𝜈)∕3(1 − 𝜈) = 5∕9, for 𝜈 = 0.25, the inner boundary displaces inward compressing the magma, but
the outer boundary experiences no posteruptive displacement.

3.2. Posteruptive Inflation Versus Deflation
The previous discussion considers whether or not the posteruptive response is inflation or deflation for the
special case of no recharge into the magma chamber. In this section I consider this question for the more
general case including melt influx from the deep reservoir.

The boundary between immediate posteruption deflation and inflation is found from the time derivative of
the displacements at t = 0+. Setting u̇(2)

r (r, t = 0) = 0 divides parameter space between posteruption inflation
and deflation. Here the superscript (2) indicates the outer, elastic region (see Appendix A). This leads to

Δp0 − 𝛿p+
0 + 𝛿p+

0
𝜏

tR

[(
R2

R1

)3

− 1

][
1 − 3(1 − 𝜈)

(1 + 𝜈)

]
= 0. (22)
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Figure 6. (left) Pressure and (right) displacement for R2∕R1 = 1.5 and  = 0.2. y axis scales are normalized by the
coeruptive pressure and displacement changes, respectively.

Assuming relatively low rate of preeruptive inflation such that Δp0∕𝛿p+
0 ≪ 1, equation (22) reduces to

tR

𝜏
=

[(
R2

R1

)3

− 1

][
1 − 3(1 − 𝜈)

(1 + 𝜈)

]
. (23)

The boundary between posteruptive inflation and deflation depends on 𝜏∕tR as well as R2∕R1, 𝜈, and . Note
that the ratio tR∕𝜏 can be considered as a Deborah number, the ratio of relaxation time to observation time.
The result is shown graphically in Figure 5, for three ratios of R2∕R1. The no recharge limit corresponds to the
tR∕𝜏 = 0 axis. As expected posteruptive reinflation is favored by large  and tR∕𝜏 , that is short refilling time
relative to the Maxwell time. For smaller R2∕R1 the deflationary field is more restricted.

Sample time histories are shown in Figure 6. From Figure 5, I estimate that for R2∕R1 = 1.5 and  = 0.2 the
critical ratio is tR∕𝜏 ≈ 1.5. Longer relaxation times lead to inflation, whereas shorter relaxation times lead to
deflation. Indeed, as seen in Figure 6, for tR∕𝜏 < 1.5 the initial response is deflationary whereas for tR∕𝜏 > 1.5
the response is immediate inflation.

These results have clear implications for the interpretation of posteruption deformation signals. If inflation is
observed immediately following an eruption that would imply a lower bound on tR∕𝜏 , the bound depending
on R2∕R1 and . Assuming that a priori information can be used to constrain these parameters, one should
be able to constrain tR∕𝜏 . For example, thermal models place constraints on R2∕R1 [Newman et al., 2001; Mas-
terlark et al., 2010], and comparison of eruptive flux to GPS station velocity allows constraints to be placed on
the magma system compressibility [Segall, 2013; Hreinsdóttir et al., 2014].

4. Eruption Recovery Time

By assumption, the conditions for eruption were met at t = 0−. It is therefore sensible to assume that the
subsequent eruption occurs when some combination of magma pressure and stress state in the surrounding
crust return to the conditions at t = 0−. If eruption onset requires pushing a plug out of a preexisting conduit,
then magma chamber pressure is the dominant factor. For dike propagation, a combination of pressure and
stress is relevant to eruption onset (see section 4.2).

If the magma chamber was inflating prior to the eruption (potentially very slowly), then Δp0 = p∞ − p−
0 > 0.

In this case the magma chamber pressure recovers to the preeruptive value in a finite time tc. For an elastic
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system this is given by setting 𝛿p in equation (14) to zero

tce = 𝜏 ln

(
1 −

𝛿p+
0

Δp0

)
, (24)

where 𝛿p+
0 < 0, as the pressure drops during the eruption. For −𝛿p+

0 ∕Δp0 ≫ 1, tce ≈ 𝜏 ln(|𝛿p+
0 |∕Δp0). Because

of exponentially decreasing flux in the limit Δp0 → 0 the recovery time in this limit is infinite. For the general
viscoelastic case the time for pressure to recover is found by setting 𝛿p in equation (9) to zero and solving
for tc.

4.1. Mass Recharge Time
An interesting question is how much magma accumulates in the time interval it takes for the pressure to
recover. From (1) and (4)

dm
dt

=
𝜌V(𝛽m + 𝛽c)

𝜏
[Δp0 − 𝛿p(t)]

= 𝛿m
𝜏

[
Δp0 − 𝛿p(t)

𝛿p+
0

]
,

(25)

where I have made use of (6) and (16), and 𝛿m is the mass loss in the previous eruption. The posteruptive mass
change is found by integrating (25)

m(t) = 𝛿m
𝜏

[
Δp0

𝛿p+
0

t − ∫
t

0

𝛿p(t′)
𝛿p+

0

dt′
]
. (26)

In the elastic (long Maxwell time) limit the pressure history is given by equation (14). Substituting into (26)
yields

m(t)
𝛿m

=

(
1 −

Δp0

𝛿p+
0

)(
e−t∕𝜏 − 1

)
. (27)

Setting m(t) = −𝛿m yields tce as in equation (24) as expected; for elastic deformation the mass and pressure
changes are proportional.

One can develop approximations for the pressure and mass recovery times accurate in the limit tR∕𝜏 ≪ 1, for
which the roots, the inverse characteristic relaxation times, are given by s1 = −(1+𝛼)∕tR and −1∕(1+𝛼)𝜏 .
In this limit the characteristic time for both pressure and magma chamber mass to recover is

tc ≈ (1 + 𝛼)𝜏 ln

[
1 −

𝛿p+
0

(1 + 𝛼)Δp0

]
, (28)

which exceeds the repressurization time in the elastic limit, tce.

Results are shown for Δp0∕|𝛿p+
0 | = 0.05 in Figure 7. The time for pressure and mass to recover in the elastic

case is, tce ≈ 3.04𝜏 . For tR∕𝜏 = 0.1 rapid viscoelastic relaxation substantially delays the pressure recovery,
in the case of  = 0.8 by more than a factor of 2 (Figure 7b). In this sense viscoelastic deformation may
delay the eruption onset as suggested by Jellinek and DePaolo [2003]. In the opposite limit, for tR∕𝜏 = 10 the
pressure history is well approximated by (24), while the mass takes considerably longer to recover (Figure 7c).
In particular, at the time the pressure has recovered to its preeruption state, only slightly more than 80% of
the mass erupted has recovered (Figure 7c).

Figure 8a illustrates the time for magma pressure to recover normalized by tce as a function of tR∕𝜏 and ,
while Figure 8b shows the fraction of the erupted mass that has been recharged at the time pressure recovers
to its preeruption value. Figure 8a shows that for tR∕𝜏 ≪ 1 and incompressible magmas viscoelastic relaxation
increase the time it takes for pressure to recover to its preeruptive value, consistent with equation (28). Inter-
estingly, for tR∕𝜏 ∼ 10 and large , the pressure recovers slightly faster than in the elastic limit. This part of
parameter space is associated with incomplete mass recharge at the time the magma pressure has recovered
to preeruptive values, as seen in Figures 8b and 7c.
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Figure 7. Normalized magma chamber pressure and mass recovery. (a) tR∕𝜏 = 0.1 and  = 0.2. Circle marks the approximation given by equation (28). (b) Same
but for  = 0.8. (c) tR∕𝜏 = 10 and  = 0.8. Circle marks the elastic recovery time, tce given by (24).

This behavior can be understood as follows: for tR∕𝜏 ≪ 1 the chamber creeps inward increasing the pres-
sure, which then diminishes the pressure gradient driving flow into the magma chamber. This occurs on the
timescale tR∕(1+𝛼). The resulting inflation is slow enough that the viscoelastic shell stays relaxed and infla-
tion takes place on a timescale (1+𝛼)𝜏 . These two timescales can be seen in Figures 7a and 7b. At the other
extreme tR∕𝜏 ≫ 1 deformation is essentially elastic, and pressure and mass reaccumulate on timescale tce.
At intermediate tR∕𝜏 viscoelastic relaxation and recharge take place on comparable timescales. For relatively
incompressible melts viscoelastic relaxation drives up the chamber pressure, causing the pressure to recover
more rapidly than in the elastic case, and also before recharge has replaced the mass lost in the previous
eruption.

Traditionally, surface deformation (“inflation”) has been monitored to track the state of the magmatic sys-
tem. In the elastic limit inflation is, of course, proportional to the change in magma chamber pressure. This is
compared for the viscoelastic case in Figure 9a, which shows the displacement amplitude within the elastic
domain, region 2, at the time magma chamber pressure recovers to preeruptive values, 𝛿p(t)= 0. Interestingly,
for tR∕𝜏 between 1 and 10 inflation does not recover to the preeruptive state at the time that pressure recovers,
particularly for small , although this behavior is also observed for relatively incompressible magmas.

Figure 10 shows magma pressure and mass, as well as displacements on the outer boundaries of the magma
chamber and the viscoelastic shell as a function of time. For tR∕𝜏 ∼ 3 and  = 0, the magma chamber walls
continue to creep inward following the eruption (Figure 10a). However, in this perfectly compressible limit

Figure 8. (a) The time it takes for magma chamber pressure to recover to the value prior to the eruption, normalized by
the elastic response, 𝜏 ln

(
1 − 𝛿p+0 ∕Δp0

)
. (b) The magma chamber mass that has recovered at the time the pressure

recovers to preeruption value; 1.0 equals full mass recovery.
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Figure 9. (a) Displacement at the time the pressure recovers to preeruption value; zero corresponds to displacements
recovering to preeruption values. (b) Time it takes for remote displacements to recover to preeruptive value normalized
by the pressure recovery time.

creep does not alter the chamber pressure, so the magma chamber pressure and mass recovery are propor-
tional (Figures 10a and 8b along the  = 0 axis). Nevertheless, the inward creep of the chamber walls retards
reinflation within the elastic domain, region 2. In the incompressible limit, = 1, the change in mass is propor-
tional to the displacement of the magma chamber walls (Figure 10b). Because the viscoelastic displacements
are convolutions over past pressure-rate history, they remain sensitive to the coeruptive pressure drop and
thus do not recover as rapidly as the pressure, which increases due both to compression and recharge.

Figure 9b illustrates the time it takes for inflation to recover to its preeruptive value relative to the time for
the magma chamber pressure to recover. For large and small tR∕𝜏 this ratio is near one, but for tR∕𝜏 ∼ 10 the
deformation can take several multiples of the pressure recovery time to restore the coeruptive deflation. This
can also be seen in Figure 10, where the displacements in the outer region, u(2), take considerably longer to
recover to zero than the chamber pressure. For volcanoes in which magma chamber pressure alone controls
eruption potential, systems with parameters similar to those in Figure 10 could be capable of erupting well

Figure 10. Time dependent behavior when tR and 𝜏 are similar. u1 displacement of magma chamber wall, u2 displacement of elastic region. (a) tR∕𝜏 = 3, = 0.
(b) tR∕𝜏 = 6, = 1.
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before the deflation from the previous eruption had recovered. For eruptions initiated by dike propagation
we need to consider stress changes in the crust surrounding the magma chamber, as in the following section.

4.2. Stresses
The magma chamber pressure is determined by a combination of refilling and pressurization due to creep.
These factors both contribute to the stresses in the viscoelastic shell and surrounding elastic medium.
Appendix A derives the stresses in a full space, that is, ignoring free-surface effects. Based on discussion there,
the results are accurate to order (R2∕d)2 and thus should be accurate for modest R2∕d. Indeed, McTigue [1987,
Figure 2b] shows that in the elastic case (R2 =R1) the stresses are dominated by the spherically symmetric,
full-space solution, even for R1∕d = 0.5.

Before exploring general results, which are given in Appendix A, it is worthwhile considering limiting behav-
ior. The short and long time limits are found by substituting (A10) into (A23) and (A24) and applying the
limit theorems for Laplace transforms. This yields the instantaneous elastic response: the radial stress is
𝜎
(1)
rr (t = 0) = 𝜎

(2)
rr (t = 0) = −𝛿p+

0 (R1∕r)3, while the hoop stress is 𝜎(1)
𝜃𝜃
(t = 0) = 𝜎

(2)
𝜃𝜃
(t = 0) = 𝛿p+

0 ∕2(R1∕r)3,
which is half the magnitude but opposite in sign. An expanding (or contracting) sphere in an elastic full space
generates pure deviatoric stress. Note by symmetry that 𝜎𝜙𝜙 = 𝜎𝜃𝜃 . The fully relaxed response within the vis-
coelastic shell is 𝜎(1)

rr = 𝜎
(1)
𝜃𝜃

= −Δp0, the principal stresses become equal, while the radial stress necessarily
matches the pressure boundary condition.

It is also useful to consider the no recharge limit. Equation (A26) in Appendix A invert to

𝜎
(1)
𝜃𝜃 lim 𝜏−1→0

=
𝛿p+

0

(1 + 𝛼)
{[

(1 + 𝛼)
2

(
R1

r

)3

+ 1

]
e−(1+𝛼)t∕tR − 1

}

𝜎
(1)
rr lim 𝜏−1→0

=
𝛿p+

0

(1 + 𝛼)
{[

1 − (1 + 𝛼)
(

R1

r

)3
]

e−(1+𝛼)t∕tR − 1

}
.

(29)

The stress at t = 0 is as noted above, while the fully relaxed response is 𝜎(1)
𝜃𝜃
(t → ∞) = 𝜎

(1)
rr (t → ∞) = −𝛿p+

0 ∕
(1 + 𝛼). A significant result is that the hoop stresses within the viscoelastic shell change sign with time. For
a drop in chamber pressure during the eruption 𝛿p+

0 < 0, the hoop stresses are at first compressive, while the
radial stress is relative tension. As the shear stresses within shell relax the principal stresses must approach
one another. The radial stress is constrained by the pressure boundary condition at r = R1. Thus, the hoop
stress changes sign to match the radial stress, in the no recharge limit becoming −𝛿p+

0 ∕(1 + 𝛼), which for
𝛿p+

0 < 0 is relative tension.

In the limit of long Maxwell relaxation time (tR∕𝜏 ≫ 1) we expect the chamber to pressurize exponentially
and the circumferential compression to relax exponentially over time. On the other hand, in the limit of slow
refilling (tR∕𝜏 ≪ 1) the chamber pressure first follows the no recharge limit. For slow refilling we thus expect
the hoop stress to change sign. Figure 11 confirms this, showing that the radial stress decays monotonically,
while the hoop stress initially decays toward the radial stress, such that the two principal stresses are equal
at a time that scales with tR. The hoop stress then goes through a relative tensile maximum, which may have
significant implications for dikes emanating from the chamber. At later time the hoop stress exceeds the radial
stress, following which both stresses decay to background values.

The conditions for a dike propagating from the magma chamber to reach the surface depend on magma
pressure and viscosity, as well as the surrounding stress and thermal state. The flow rate through the dike
must be high enough that the dike can propagate before freezing, and this depends on magma chamber
pressure among other parameters. Rubin [1993] examines the question of whether a two-dimensional dike
can widen elastically fast enough to prevent the walls from freezing inward. For melt initially at the solidus and
a linear decay in temperature away from the chamber boundary, the condition for thermal viability depends
on a single dimensionless parameter that depends on temperature gradient, the square root of melt viscosity,
and the chamber pressure (assumed constant) to the 5∕2 power. Thus, the chamber pressure is critical in
controlling whether a nascent dike can escape the magma chamber.

In order for a dike propagating away from the magma chamber to even open the pressure within the dike must
exceed the least compressive stress tangential to the chamber wall. Here stress and 𝛿p(t) are measured relative
to an initial state which, by assumption, was at eruption. Thus, regardless of the absolute chamber pressure
and tectonic stress, 𝜎(1)

𝜃𝜃
(r = R1, t) + 𝛿p(t), measures the difference between the circumferential compressive
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Figure 11. Normalized radial (dashed) and hoop (solid) stress evaluated at the margin of the magma chamber (r = R1)
for three different values of tR∕𝜏 . Horizontal dashed line marks the fully relaxed response in the limit of no recharge.

stress and dike pressure, relative to the past eruptive state. If conditions at t = 0− were sufficient to open a dike,
those conditions are replicated when 𝜎

(1)
𝜃𝜃
(r = R1, t) + 𝛿p(t) = 0. Note that dike opening could have occurred

before this, as the excess pressure is likely to be positive before recovering to the value it was prior to the
previous eruption.

The change in excess pressure is shown in Figure 12, forΔp0 =0.05. Interestingly, the overpressure exceeds the
initial, preeruptive value at times on the order of the relaxation time, tR. Note from Figures 7 and 12 that
the excess pressure recovers more rapidly than the pressure, due to the rapid changes in the hoop stress.
In the limit tR∕𝜏 ≪ 1 the time of the peak excess pressure is

tcep ≈ −tR∕(1 + 𝛼) ln
[

(tR∕𝜏)2

(1 + 𝛼)4

]
. (30)

For the parameters in Figure 7a (i.e.,  = 0.2), this yields tcep ∼ 0.38𝜏 compared to the time for magma
chamber pressure to recover, given by (28), tc ∼4.6𝜏 . This may indicate that the conditions for a dike to open

Figure 12. Excess pressure at the margin of the magma chamber 𝜎(1)
𝜃𝜃

(r = R1, t) + 𝛿p(t) for three different tR∕𝜏 .
Δp0 = 0.05.
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Figure 13. The time it takes for the excess pressure 𝜎
(1)
𝜃𝜃

(r, t) + 𝛿p(t) to recover to preeruption value, normalized by the
time it takes the magma chamber pressure to recover. (a) Excess pressure measured at the edge of the magma chamber
r = R1. (b) Excess pressure measured at the edge of viscoelastic shell r = R2.

may occur well before the magma chamber pressure has recovered sufficiently for the dike to be thermally
viable according to the criterion outlined by Rubin [1993].

Figure 13a illustrates the time it takes for the excess pressure at r = R1 to recover relative to the time for
the magma chamber pressure to recover. Again, this serves to emphasize that for tR ≪ 𝜏 the conditions for
dike opening may occur well before the magma pressure recovers to a value sufficient for sustained dike
propagation. The excess pressure at the chamber wall could permit dike opening, while hoop stresses farther
away in the elastic region are still compressive. Figure 13b shows the excess pressure recovery time at the
margin of the viscoelastic region r = R2, 𝜎(2)

𝜃𝜃
(r = R2, t) + 𝛿p(t); for intermediate values of tR∕𝜏 the excess

pressure in the surrounding elastic region takes longer to recover than the chamber pressure.

Finally, Figure 14 shows the excess pressure as a function of radial distance, r, at three critical times: The first
is the time at which the excess pressure at r = R1 recovers to the preeruptive state, tcep. Interestingly, the
hoop stress is uniform within the viscoelastic zone, region 1, at this time. This can be shown to be a general
property that holds for all choices of parameters. At this time the excess pressure in the outer elastic region is

Figure 14. Excess pressure at three critical times: (1) when excess pressure recovers in the inner, viscoelastic shell, tcep1,
(2) when the magma pressure recovers, tcp, and (3) when the excess pressure recovers at the outer edge of the
viscoelastic shell, tcep2.  = 1.0; tR∕𝜏 = 5.455; R2∕R1 = 1.5.
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Figure 15. The amount of deflation remaining when excess pressure recovers in (a) region 1 and (b) region 2. Zero
equals full recovery.

still compressive, so that presumably a dike might stall after leaving the viscoelastic shell. The second time is
when the magma chamber pressure recovers to preeruptive value, tcp. At this time the excess pressure change
within the viscoelastic region is everywhere positive, that is exceeding the value prior to the last eruption;
however, it is still negative within the outer elastic region. The final time is when the excess pressure recovers
at the outer boundary of the viscoelastic region, tcep2. At this time the excess pressure has met or exceeded
the value it obtained prior to the last eruption for all distances r.

As discussed above, deformation at Earth’s surface is commonly employed as a proxy for the state of the
magmatic system. It is thus useful to consider the fraction of the deflation that has recovered when the excess
pressure is restored in both the viscoelastic and elastic regions. Figure 15a shows the remaining deflation at
the time the excess pressure at the boundary of the magma chamber recovers, tcep. Note that values less than
1.0 in the lower left indicate that the system deflated following the eruption, even though the excess pressure
recovered. Figure 15b shows the remaining deflation at the time the excess pressure recovers at the outer
margin of the viscoelastic region, tcep2. It resembles Figure 9a which shows the deflation when the magma
pressure recovers, although the magnitudes are smaller in Figure 15b. This is because the hoop stresses in the
elastic region are compressive, so it takes longer for the excess pressure to recover.

Note from Figure 14 that at t = tcep2 the excess pressure is everywhere at least equal to that at the time of the
previous eruption. Yet Figure 15b shows that for these parameters, log (tR∕𝜏) = 0.7368, = 1, the deflation
from the previous eruption will not have fully recovered at that time. Thus, the conditions for dike propagation
may precede recovery of the previous deflation, assuming the magma pressure is sufficiently high to sustain
dike growth.

5. Discussion

The approach here has been to find exact solutions to a highly simplified problem. Consequently, a num-
ber of rather stringent idealizations have been made: that the magma chamber is spherical, the rheology is
Maxwell viscoelastic and spatially uniform within a spherical shell surrounding the magma chamber, and that
the radius of that shell is fixed. The latter may not be too restrictive of an approximation, given that the temper-
ature field likely evolves slowly compared to the eruption cycle time. More realistic modeling would account
for nonlinear and temperature (and therefore spatially) dependent rheology. I have also assumed the flux is
linearly proportional to the difference between a constant source pressure and the magma chamber pressure.
This assumption is consistent with Newtonian flow through conduits of fixed dimension and is preferable to
assuming a time invariant flux. On the other hand, this may not be a good description if the magma chamber
is recharged by dikes intersecting the magma chamber from below [Karlstrom et al., 2009].

The calculations include only a first-order approximation of free-surface effects on the displacement and stress
fields. In particular, I approximate the stresses near the magma chamber by the full-space solution and neglect
higher-order effects due to the presence of the free surface (section 1). While this should be a reasonable first
approximation [e.g., McTigue, 1987], Karlstrom et al. [2010], who model a similar 2-D plane-strain system using
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bipolar coordinates, find a change in the spatial pattern of stress within the viscoelastic shell as deviatoric
stresses relax. A more accurate accounting of free-surface effects is an important goal of future work.

In this work I have restricted attention to eruptions with duration that is very short compared to either the
relaxation or elastic refilling time, such that the eruption is effectively instantaneous. This should be a good
approximation for explosive eruptions that last hours to perhaps a few days. For longer duration effusive
eruptions it would be necessary to account for both relaxation and recharge during the course of the eruption.
If one were to specify the mass discharge history from (e.g., satellite) observations, the pressure and defor-
mation response could be developed in the form of convolutions over time of the solutions given here for
instantaneous mass discharge.

Many of the specific calculations here take the ratio of the shell radius to chamber radius, R2∕R1, to be 1.5,
based on the steady state thermal model of Masterlark et al. [2010]. For less mature magmatic systems, for
which the temperature field is far from steady state, it is likely the effective viscoelastic shell radius is consid-
erably smaller. Results are qualitatively similar for smaller R2∕R1, although the magnitude of the viscoelastic
effects are diminished. It is also possible that the viscoelastic aureole is composed, at least in part, of partially
or recently solidified magma. In this case the shell is likely to be thicker at the bottom than the sides or top.
The response of more complex magma reservoir geometries with nonspherical viscoelastic aureoles could be
addressed numerically.

I have identified cases where the conditions for dike propagation appear to be met before the deflation
accompanying the past event has fully recovered (Figure 15). This has been observed, for example, at Krafla
[e.g., Sturkell et al., 2006]. The opposite is also observed, inflation exceeding the deflation of the previous
eruption, for example, at Hekla [Sturkell et al., 2013, Figure 7]. The latter is not predicted by any of the mod-
els considered here, although I have neglected the influence of changes in tectonic stress that might occur
between eruptions. For example, an increase in the least compressive stress would inhibit diking.

Figure 12 shows that for tR < 𝜏 the excess pressure can recover quickly, due to rapid changes in the hoop
stress. At the time the excess pressure at the chamber margin recovers to the preeruptive state the hoop
stress is uniform within the viscoelastic shell (Figure 14). This suggests that incipient dikes might be able to
propagate into the viscoelastic shell rather early in the reinflationary period. This would transfer heat into the
crust surrounding the magma chamber, acting to keep the effective viscosity of the wall rocks low.

It would be interesting to consider at what point the evolving stress field in the elastic region might trigger
seismicity. Of course, the tendency for fault slip depends on the total stress state, not simply the perturbing
stresses due to magma chamber reinflation. Thus, we cannot predict the onset time for seismicity without
additional information. The second stress invariant of the perturbing stresses in the elastic region J2 depends
only on the difference between the radial and hoop stresses. Since 𝜎𝜃𝜃 and 𝜎rr are proportional,

√
J2 is propor-

tional to 𝜎rr , specifically
√

J2 =
√

3𝜎rr∕2. The time dependence of stress in the elastic region is proportional
to displacement there, so depending on the threshold for the onset of seismicity, measurable inflation may
precede seismicity, consistent with some observations.

6. Conclusions

1. Posteruption inflation can occur without recharge into the magma chamber if the magma is sufficiently
incompressible relative to the surroundings.

2. More generally, whether the immediate posteruptive response is deflationary or inflationary depends on
magma compressibility , the ratio of Maxwell time to characteristic chamber refilling time tR∕𝜏 , and the
relative size of the viscoelastic aureole, R2∕R1. Posteruptive inflation is favored by incompressible magmas,
long relaxation times, and small viscoelastic aureoles.

3. Fast viscoelastic relaxation delays recovery of the magma chamber pressure and mass relative to the elastic
case, particularly for relatively incompressible magmas.

4. For relaxation times roughly an order of magnitude longer than the elastic refilling time, the erupted mass
is not fully replaced at the time the magma chamber pressure recovers to the preeruptive state.

5. For relaxation times 1 to 10 times the elastic refilling time, the coeruptive deflation is not fully recovered at
the time the magma chamber pressure recovers to the preeruptive state.

6. For relatively short Maxwell relaxation times the radial stress decays monotonically, while the hoop stresses
change from relative compression to relative tension. This causes the excess pressure at the chamber wall,
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the sum of chamber pressure and hoop stress, to recover to preeruptive values well before the magma
chamber pressure recovers.

7. At the time the excess pressure recovers at the chamber wall it is uniform everywhere within the viscoelastic
shell (neglecting free-surface effects). This suggests that incipient dikes may open well before the magma
pressure is high enough for them to propagate outside the viscoelastic aureole. Such dike injections would
transfer heat into the surrounding crust, keeping the effective viscosity of the wall rocks low.

8. For some parameters the hoop stress plus chamber pressure can exceed that at the time of the previous
eruption at all distances from the magma chamber before the deflation from the previous eruption has fully
recovered. This suggests that the conditions for dike propagation may precede recovery of the coeruptive
deflation.

Appendix A: Derivation

Taking Laplace transforms of (8) yields

Ω
(
Δp0

s
− 𝛿p

)
= 𝜌

[
V𝛽m

(
s𝛿p − 𝛿p+

0

)
+ 4𝜋R2

1

(
sû − u+

0

)]
. (A1)

Here ⋅̂ indicates Laplace transform quantity with s the transform variable, and û is shorthand for the transform
of the radial displacement evaluated on the chamber wall, û ≡ [ur(r = R1)]. Also, 𝛿p+

0 is the pressure drop at
t = 0+ due to the eruption, and u+

0 is the accompanying radial displacement of the chamber wall. Dragoni and
Magnanensi [1989] derive the solution for a spherical magma chamber surrounded by a Maxwell viscoelastic
shell in a full space. The displacements within the shell, region 1, and the outer, elastic domain, region 2, in
the Laplace domain are

û(1)
r (r, s) = Â(s)r

3
+ B̂(s)

r2

û(2)
r (r, s) = Ĉ(s)

r2

(A2)

where

Â = −
𝛿p
2𝜂

(1 − 2𝜈
1 − 𝜈

)(
R1

R2

)3

D̂−1

B̂ =
𝛿pR3

1

4𝜇
(s + 𝜇∕𝜂)D̂−1

Ĉ =
𝛿pR3

1

4𝜇

[
s + 𝜇(1 + 𝜈)

3𝜂(1 − 𝜈)

]
D̂−1

(A3)

and

D̂ = s +
𝜇(1 + 𝜈)R3

1

3𝜂(1 − 𝜈)R3
2

≡ s + t−1
R , (A4)

and the relaxation time is

tR = 3𝜂(1 − 𝜈)
𝜇(1 + 𝜈)

(
R2

R1

)3

. (A5)

See also Chapter 7 of Segall [2010] for derivation. For simplicity, I have restricted results to the case in which
the elastic constants are the same in both regions 1 and 2. Because elastic moduli are temperature dependent
there could well be a difference, however, this effect is unlikely to be large.

From the Dragoni and Magnanensi [1989] results above we find û(1)
r (r = R1, s) ≡ [ur(r = R1)],

û ≡ [ur(r = R1)] =
𝛿pR1

4𝜇

(
s + (𝛼 + 1)t−1

R

s + t−1
R

)
, (A6)

where I have introduced the parameter 𝛼

𝛼 = 3(1 − 𝜈)
(1 + 𝜈)

[(
R2

R1

)3

− 1

]
. (A7)
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The initial, elastic displacement accompanying the eruption is given by u+
0 = 𝛿p+

0 R1∕4𝜇. Substituting this and
(A6) into (A1) yields

Ω
𝜌

(
Δp0

s
− 𝛿p

)
= V𝛽m

(
s𝛿p − 𝛿p+

0

)
+ V𝛽c

[
s𝛿p

(
s + (𝛼 + 1)t−1

R

s + t−1
R

)
− 𝛿p+

0

]
, (A8)

where I have made use of the definition of the chamber compressibility (5). Note that the elastic limit of (A8),
found by setting t−1

R → 0, yields the Laplace transform of the elastic governing equation (6). Separating the
elastic response yields

Δp0

s
− 𝛿p = 𝜏

[
s𝛿p − 𝛿p+

0 + s𝛿p

(
𝛼t−1

R

s + t−1
R

)]
, (A9)

where I have introduced the dimensionless parameter , defined in (13), and the characteristic refilling time
𝜏 , defined in (6). Solving for 𝛿p yields

𝛿p(s) =
(
Δp0 + s𝜏𝛿p+

0

) (
s + t−1

R

)
s
[
𝜏s𝛼t−1

R + (𝜏s + 1)
(

s + t−1
R

)] . (A10)

The limit theorems for Laplace transforms are used to verify that 𝛿p(t = 0+) = 𝛿p+
0 and 𝛿p(t → ∞) = Δp0.

Furthermore, the elastic limit t−1
R → 0 yields

𝛿p(s)lim t−1
R →0 =

Δp0 + s𝜏𝛿p+
0

s𝜏(s + 𝜏−1)
(A11)

which transforms to the elastic solution

𝛿pe(t) = Δp0 +
(
𝛿p+

0 − Δp0

)
e−t∕𝜏 , (A12)

immediately seen to be the solution to (6).

The term in square brackets in the denominator of (A10) is quadratic in s, such that we rewrite (A10) as

𝛿p(s) =
(
Δp0 + s𝜏𝛿p+

0

) (
s + t−1

R

)
s𝜏(s − s1)(s − s2)

, (A13)

where the roots s1, s2 are

s1,2 = −
t−1

R (1 + 𝛼) + 𝜏−1

2
± 1

2

√(
t−1

R (1 + 𝛼) + 𝜏−1
)2 − 4𝜏−1t−1

R . (A14)

Inverting the Laplace transform (A13) gives the chamber pressure in the time domain as in (9).

Note when  = 0 (A10) reduces to the elastic solution (A11); in the perfectly compressible limit viscoelastic
relaxation does not alter the chamber pressure. The roots s1,2 correspond to −𝜏−1 and −t−1

R .

In the no recharge limit 𝜏−1 → 0, equation (A10) reduces to

𝛿p(s)lim 𝜏−1→0 =
𝛿p+

0

s

(
s + t−1

R

s + (1 + 𝛼)t−1
R

)
, (A15)

which transforms to equation (17).

A1. Surface Displacements
The displacements in the outer, elastic region are of particular interest since the free surface where measure-
ments are made resides in region 2. From (A2) and (A3)

û(2)
r (r, s) =

𝛿pR3
1

4𝜇r2

(
s + t−1

R (R2∕R1)3

s + t−1
R

)
. (A16)

These are the displacements in the outer, elastic full space. However, this result can be used to derive
an approximate expression for displacements on the surface of a half-space in the limit that R2∕d ≪ 1
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[Segall, 2010, Chapter 7]. We follow the approach of McTigue [1987] for deriving the well-known Mogi solution
for a spherical chamber in a fully elastic half-space. Resolving the displacements onto the plane z = 0 leads to
vertical and horizontal (radial) displacements uz = urd∕r and uh = urh∕r, where d is the depth of the chamber
center, and h is the horizontal distance along the free surface measured from the projection of the chamber
center. One can also resolve the radial stress in the full space into shear and normal tractions acting on the
plane z = 0. McTigue [1987] applied equal and opposite tractions on z = 0 to render the plane traction free.
Remarkably, this ends up simply increasing the displacements on z = 0 due to the full-space solution by a
factor of 4(1−𝜈). The solution is approximate in that the boundary conditions on the chamber wall and in the
viscoelastic case the stresses within the shell are met only approximately. The traction boundary conditions
on z = 0 are met exactly.

McTigue [1987] shows that at this stage the elastic solution is everywhere accurate to order (R1∕d)2. He then
derives a higher-order solution accurate to order (R1∕d)5. While the elastic solution is only formally accurate
for R1∕d ≪ 1 the surface displacements are only modified by less than 10% for R1∕d < 0.5 when the next
higher-order corrections are included. We may thus conjecture that the viscoelastic solution is reasonably
accurate for R2∕d ≲ 0.5, although further calculations are needed to confirm this. McTigue [1987, Figure 2b]
shows that the deviatoric stresses are dominated by the spherically symmetric, full-space solution, even for
R1∕d = 0.5, which suggests that viscoelastic displacements may also by reasonably well approximated by
relaxation of these stresses.

Combining (A16) with (A13) and following the procedure described above yields

ûz(z = 0, s) =
(1 − 𝜈)R3

1

𝜇d2

[
1

(1 + 𝜁2)3∕2

]{(
Δp0 + s𝜏𝛿p+

0

) [
s + t−1

R (R2∕R1)3
]

s𝜏(s − s1)(s − s2)

}
, (A17)

where 𝜁 = h∕d is the radial distance from the center of the source normalized by the source depth. Horizontal
displacements are found by multiplying by 𝜁 . Equation (A17) can be inverted exactly; results are given in the
main text, equation (15).

The limiting behavior is found by combining (A10) with (A16) and using the limit theorems for Laplace trans-
forms, yielding u(z = 0, t = 0+) ∝ 𝛿p+

0 R3
1∕𝜇d2 and u(z = 0, t → ∞) ∝ Δp0R3

2∕𝜇d2. The infinite time response
is also a Mogi solution, but with effective radius R2 as the magma chamber pressure is transmitted to the
boundary of the viscoelastic region in the fully relaxed state.

In the no recharge limit, 𝜏−1 → 0, the surface displacements are found by combining (A16) and (A15)

ûz(z = 0, s)lim 𝜏−1→0 =
(1 − 𝜈)R3

1

𝜇d2

[
1

(1 + 𝜁2)3∕2

]
𝛿p+

0

s

(
s + t−1

R (R2∕R1)3

s + (1 + 𝛼)t−1
R

)
, (A18)

which has the inverse transform given by (18).

The case of  = 0, tR = 𝜏 is degenerate, s1 = s2. In this limit combining (A10) with (A16) leads to

û(2)
r (r, s) =

R3
1

4𝜇r2

(
Δp0 + s𝜏𝛿p+

0

) (
s + 𝜏−1(R2∕R1)3

)
s𝜏(s + 𝜏−1)2

, (A19)

which has inverse Laplace transform

4𝜇r2

R3
1

u(2)
r (r, t) = Δp0

(
R2

R1

)3

+ e−t∕𝜏

{(
𝛿p+

0 − Δp0

)( t
𝜏

[(
R2

R1

)3

− 1

]
+ 1

)

−Δp0

[(
R2

R1

)3

− 1

]}
.

(A20)

A1.1. Convolution Form
It is worth noting from (A16) that the displacements in the exterior, elastic region can be written in the form
of a convolution of the pressure rate with a viscoelastic kernel. The Laplace transform of dp/dt is s𝛿p − 𝛿p+

0 .
Thus, the displacements can be written as

û(2)
r (r, s) =

R3
1

4𝜇r2

[(dp∕dt) + 𝛿p+
0

] [ s + t−1
R (R2∕R1)3

s
(

s + t−1
R

) ]
, (A21)
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which in the time domain becomes

u(2)
r (r, t) =

𝛿p+
0 R3

1

4𝜇r2

[
e−t∕tR +

(
R2

R1

)3

(1 − e−t∕tR )

]
+

R3
1

4𝜇r2 ∫
t

0

dp(t′)
dt′

×

{(
R2

R1

)3

+

[
1 −

(
R2

R1

)3
]

e−(t−t′)∕tR

}
dt′.

(A22)

A2. Stresses
The radial stresses for the full-space solution are given in the Laplace domain in Segall [2010] equation (7.102),

�̂�(1)
rr = −

𝛿p(s)
s + t−1

R

[
sR3

1

r3
+ t−1

R

]

�̂�(2)
rr = −

𝛿p(s)R3
1

r3

[
s + t−1

R (R2∕R1)3

s + t−1
R

]
.

(A23)

The circumferential stresses are found from the strains, 𝜖𝜃𝜃 = ur∕r, and Hooke’s law. Note that from the dis-
placements (A2), the volumetric strain is Â in region 1 and vanishes in region 2. Substituting the displacements
into Hooke’s law yields �̂�(1)

𝜃𝜃
= K1Â(s) + 2�̂�(s)B̂(s)∕r3 and �̂�

(2)
𝜃𝜃

= 2𝜇Ĉ(s)∕r3, where K1 is the bulk modulus of the
inner region. Making use of the expressions (A3)

�̂�
(1)
𝜃𝜃

=
𝛿p(s)

s + t−1
R

[
sR3

1

2r3
− t−1

R

]

�̂�
(2)
𝜃𝜃

=
𝛿p(s)R3

1

2r3

[
s + t−1

R (R2∕R1)3

s + t−1
R

]
.

(A24)

To determine the general form of the stress, substitute (A13) into (A23) and (A24) and invert the transforms.
The hoop stresses only are reported here as the radial stress follows similarly,

𝜎
(1)
𝜃𝜃
(r, t) = −

Δp0

𝜏s1s2tR
+

(
Δp0 + s1𝜏𝛿p+

0

)
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s1R3

1

2r3
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R

)
es1t

+
(
Δp0 + s2𝜏𝛿p+

0
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s2𝜏(s2 − s1)
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s2R3

1

2r3
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R

)
es2t

𝜎
(2)
𝜃𝜃
(r, t) =

Δp0

2𝜏s1s2tR

(
R2

R1

)3

+
R3

1

2r3
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Δp0 + s1𝜏𝛿p+

0

)
s1𝜏(s1 − s2)

[
s1 + t−1

R

(
R2

R1

)3
]

es1t

+
(
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)
s2𝜏(s2 − s1)

[
s2 + t−1

R

(
R2

R1
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]

es2t

}
.

(A25)

In the no recharge limit insert (A15) into (A23) and (A24) to get the stress

�̂�
(1)
𝜃𝜃 lim 𝜏−1→0

=
𝛿p+

0

s
[

s + (1 + 𝛼)t−1
R

] [ sR3
1

2r3
− t−1

R

]

�̂�
(1)
rr lim 𝜏−1→0

=
−𝛿p+

0

s
[

s + (1 + 𝛼)t−1
R

] [ sR3
1

r3
+ t−1

R

]
.

(A26)

These invert to equation (29) in the main text.
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