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[1] Borehole dilatometers are emplaced in porous fluid
saturated rock. Pore-fluid flow induces strain, however there
is no fluid exchange with the dilatometer. Thus, the
strainmeter response is the same as the strain in the rock
only when the rock remains undrained. Otherwise the
instrumental strain �inst is given by �inst = C1 (�1 �
C2 p

1), where �1 and p1 are strain and pore pressure far
from the borehole, and C1 and C2 depend on poroelastic
rock properties. Postseismic strain in the rock is expected to
increase as the induced pore pressure gradients relax.
However, a dilatometer �3 km from a Mw 6.5 earthquake in
south Iceland shows a postseismic strain change opposite in
sign to the coseismic response. The theory developed here
for a homogeneous, isotropic medium can only partly
explain this discrepancy. Fracture dominated poroelastic
response may yield an improved fit to the data. INDEX

TERMS: 7294 Seismology: Instruments and techniques; 8159

Tectonophysics: Rheology—crust and lithosphere; 8194
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P., S. Jónsson, and K. Ágústsson, When is the strain in the meter

the same as the strain in the rock?, Geophys. Res. Lett., 30(19),

1990, doi:10.1029/2003GL017995, 2003.

1. Introduction

[2] Borehole strainmeters have become an important tool
for monitoring crustal deformation. The most widely
deployed borehole instrument is the dilatometer, developed
by Sacks and Evertson [Sacks et al., 1971], which measures
the dilatational strain, or some related component of the
strain tensor. In detail, the dilatometer may be more sensi-
tive to the areal strain in the plane perpendicular to the
borehole than it is to the strain parallel to the borehole axis
[Agnew, 1986]. Borehole dilatometers have been deployed
along the San Andreas Fault, in Japan, China, and Iceland,
and in volcanically active regions including Long Valley
Caldera and Hawaii.
[3] Crudely speaking dilatometers are steel cylinders

filled with hydraulic fluid. As the instrument is compressed
fluid flows from a sensing volume into a secondary com-
partment that is partly filled with inert gas, through a small
tube. The tube connects to a bellows within the secondary
reservoir, and deflection of the bellows is monitored by a
displacement transducer [e.g., Agnew, 1986].

[4] Dilatometers are extremely sensitive at periods of
several weeks or less and are thus the instrument of choice
for many monitoring applications. Strainmeters have
recorded coseismic strain steps [Johnston and Linde,
2002], slow and silent earthquakes [Linde et al., 1996],
deformation related to volcanic intrusions and eruptions
[Linde et al., 1993], as well as transient strain events
associated with remotely triggered earthquakes [Hill et al.,
1993]. Borehole strain meters are also an important com-
ponent of the Plate Boundary Observatory.
[5] The strain recorded by the dilatometer may, however,

not be the same as the strain experienced by rock surround-
ing the instrument. The reason for this is that crustal rock is
porous and fluid saturated. An increase in pore-fluid pres-
sure causes rock to expand; decreases lead to contraction.
The dilatometer is, on the other hand, a steel cylinder; pore-
fluid does not flow into or out of the instrument. Thus, any
time fluid flow occurs the strain in the rock can not be the
same as the strain in the strainmeter.
[6] Consider a cylindrical hole in a block of poroelastic

material (Figure 1). If the block is compressed rapidly the
pore pressure will increase and the hole will contract
elastically. If the exterior boundaries of the block are held
fixed and the fluid is allowed to drain the rock will contract.
However, as the rock shrinks the borehole must expand,
since the exterior boundary is fixed. Thus, the far-field
strain is zero, the rock locally undergoes a volume decrease,
but the borehole undergoes a volume increase.
[7] Here we derive the response of a dilatometer to strain

and pore pressure changes in the surrounding poroelastic
medium.

2. Method

[8] We assume that the rock is isotropic, and the pores are
small relative to the size of the strainmeter. Because dilatom-
eters are insensitive to shear strain we need only consider the
isotropic component of the stress. Furthermore for simplicity,
we will consider that the instrument is emplaced at shallow
depth, that the vertical stress vanishes, and the instrument is in
a state of plane stress. We ignore three dimensional effects
associated with the bottom of the borehole.
[9] Since the output of the displacement transducer in the

dilatometer is converted to strain by calibration with the
solid earth tides, we simply model the strainmeter as a
cylindrical elastic inclusion embedded in a poroelastic earth
(Figure 2).
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[10] Assuming plane stress conditions with the z-axis
vertical (szz = 0), and aligned with the borehole, the
constitutive equations for the rock (region-2), relating stress
sij to strain eij, and pore-pressure p, following Rice and
Cleary [1976] are

sij ¼ 2m 2ð Þeij þ
2m 2ð Þv 2ð Þ

1� v 2ð Þ ekkdij �
g

1� v 2ð Þ pdij; ð1Þ

where i, j, k = 1, 2, m(2) is shear modulus, v(2) and vu
(2) the

drained and undrained Poisson’s ratios, B is Skempton’s
pore pressure coefficient, and g = 3(vu

(2) � v(2))/B(1 + vu
(2)).

The corresponding vertical strain (ezz = e33) is

ezz ¼
�v 2ð Þ

1� v 2ð Þ ekk þ
g

2m 2ð Þð1� v 2ð ÞÞ
p; ð2Þ

where k =1, 2. Hooke’s law for the instrument (region 1) is

sij ¼ 2m 1ð Þeij þ
2m 1ð Þv 1ð Þ

1� v 1ð Þ ekkdij; i; j ¼ 1; 2: ð3Þ

Assuming cylindrical symmetry about the borehole axis, the
only relevant equilibrium equation for both regions is

@srr
@r

þ 1

r
srr � sqqð Þ ¼ 0 ð4Þ

[Malvern, 1969, p. 668]. Substituting the constitutive
equations, and the strain- displacement relations [Malvern,
1969, p. 668], into (4), we find that pore pressure gradients
enter the Navier form of the equilibrium equations
equivalent to body forces [Segall, 1992]
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� �� �
¼ g

2m 2ð Þ
dp

dr
:

ð5Þ

[Geerstma, 1966]. Note that the sum of the in-plane stresses
or strains are independent of coordinate system (err + eqq =
exx + eyy). Integrating, the displacements are given by

u 1ð Þ
r ¼ Ar þ E

r

u 2ð Þ
r ¼ Cr þ D

r
þ g

2m 2ð Þ
1

r

Z r

a

r0p r0ð Þdr0
ð6Þ

The requirement that the displacement remain finite at r = 0
implies E = 0. The strains are found from the displacements
as

e 1ð Þ
rr ¼ @u 1ð Þ

r

@r
¼ A

e 1ð Þ
qq ¼ u 1ð Þ

r

r
¼ A

e 2ð Þ
rr ¼ @u 2ð Þ
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@r
¼ C � D
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þ g

2m 2ð Þ p rð Þ � 1
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Z r

a

r0p r0ð Þdr0
� �

e 2ð Þ
qq ¼ u 2ð Þ

r

r
¼ C þ D

r2
þ g

2m 2ð Þ
1

r2

Z r

a

r0p r0ð Þdr0;

ð7Þ

and

e 2ð Þ
rr þ e 2ð Þ

qq ¼ 2C þ gp rð Þ
2m 2ð Þ : ð8Þ

The stresses are found by substituting the strains into the
appropriate constitutive equations (1) and (3), yielding

s 1ð Þ
rr ¼ 2Am 1ð Þ 1þ v 1ð Þ� �

1� v 1ð Þð Þ

s 2ð Þ
rr ¼ 2Cm 2ð Þ 1þ vð Þ

1� vð Þ �
2m 2ð ÞD

r2
� g

r2

Z r

a

r0p r0ð Þdr0
ð9Þ

Where in (9), and from here on, the drained and undrained
Poisson’s ratios without superscripts refer to the poroelastic
rock. The superscript (1) always refers to the elastic
inclusion.
[11] The three integration constants A, C, D are deter-

mined by three boundary conditions

u 1ð Þ
r r ¼ að Þ ¼ u 2ð Þ

r r ¼ að Þ ð10aÞ

s 1ð Þ
rr r ¼ að Þ ¼ s 2ð Þ

rr r ¼ að Þ ð10bÞ

s 2ð Þ
rr r ! 1ð Þ ¼ s1rr : ð10cÞ

Figure 1. Thought experiment to illustrate the effect of
pore-fluid flow on a dilatometer response. A block of fluid
saturated rock with a cylindrical hole is compressed. With
the external displacements fixed the fluid is allowed to
drain. As the fluid drains the rock contracts and the hole
expands.

Figure 2. The strain meter is modeled as a cylindrical
elastic inclusion of radius a in an otherwise poroelastic
earth. Region-1 refers to the elastic inclusion. Region-2 to
the surrounding poroelastic rock.
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[12] A similar far-field boundary condition exists for the
pore-pressure. It is important to note that the limit r ! 1
means far from the effects of the borehole, or r 
 a,
however r will generally be small in comparison to the
characteristic dimensions of the deformation source (fault
plane or magma chamber). Notice that the areal strain in the
inclusion is err

(1) + eqq
(1)

= 2A. Boundary conditions (a) and
(b) lead to

e 1ð Þ
rr þ e 1ð Þ

qq ¼ 2CC

1� v
C � 2

m 1ð Þ

m 2ð Þ
1þ v 1ð Þ

1� v 1ð Þ þ 1

� 	�1

ð11Þ

where C is determined by the far-field boundary condition.
Note that (8) gives an expression forC in terms of the far-field
areal strain (err

(2) + eqq
(2)

)1 and pore pressure change p1

e 1ð Þ
rr þ e 1ð Þ

qq ¼ C

1� v
e 2ð Þ
rr þ e 2ð Þ

qq

� �1
� g

2m 2ð Þ p
1

� �
: ð12Þ

This demonstrates that when the fluid pressure changes the
strain measured by the strainmeter will not be the same as that
in the rock around the borehole.
[13] There is some uncertainty as to the sensitivity of the

dilatometer to strain parallel to the borehole axis. For this
discussion we will assume that the instrument measures
�incl � err

(1) + eqq
(1)

+ aezz
(1), where 0 � a � 1. At one

extreme the instrument is completely insensitive to the
vertical strain, in the other the instrument measures the true
volume strain. Equation (12) leads to

�incl ¼ C
1� 1þ að Þv 1ð Þ

1� v 1ð Þð Þ 1� vð Þ
e 2ð Þ
rr þ e 2ð Þ

qq

� �1
� g

2m 2ð Þ p
1

� �
: ð13Þ

Defining the rock response as �1 � err
(2) + eqq

(2)
+ aezz

(2), we
find that

�incl ¼ C

1� v 1ð Þ
1� 1þ að Þv 1ð Þ

1� 1þ að Þv �1 � g 1þ að Þ
2m 2ð Þ p1

� �
ð14Þ

The constitutive equations (1) yield

s 2ð Þ
rr þ s 2ð Þ

qq ¼ 2m 2ð Þ 1þ v

1� v
e 2ð Þ
rr þ e 2ð Þ

qq

� �
� 2g

1� vð Þ p: ð15Þ

Equation (15) when combined with the undrained pore
pressure change p = �B(srr

(2) + sqq
(2)

)/3 can be solved for the
rock strain in terms of the undrained pore pressure response.
This result substituted into (13) yields

�incl t ¼ 0ð Þ¼ C

1� v 1ð Þ
1� 1þ að Þv 1ð Þ

1� 1þ að Þvu

� �
�1 t ¼ 0ð Þ: ð16Þ

The output of the strainmeter is calibrated against the solid
earth tides. Denote the instrument response as �inst �
C�incl, where C is a calibration factor. The calibration is
chosen such that �inst = �1 for undrained conditions. This
implies that C = [ ]�1 where [ ] denotes the terms in brackets
in (16). With this definition (14) becomes

�inst ¼ 1� 1þ að Þvu
1� 1þ að Þv

� 	
�1 � 3 1þ að Þ vu � vð Þ

2m 2ð ÞB 1þ vuð Þ
p1

� �
; ð17Þ

which is the principal result of this paper. Notice that fora = 0
the fully drained response is�inst/�1 = (1� vu)/(1� v)� 1.
For a = 1 the fully drained response is�inst/�1 = (1� 2vu)/
(1� 2v)� 1. Note also that if�1 = 0 then�inst > 0 for a pore
pressure decrease, as was deduced from the thought
experiment in Figure 1.

2.1. An Example: Plane Strain Edge Dislocation

[14] Rice and Cleary [1976] give the plane-strain solution
for a two dimensional edge dislocation in a poroelastic
medium. Superposition of two edge dislocations of opposite
sign approximates a strike-slip in a full space, with depth
much greater than the fault length. From their results

s tð Þ ¼ mb vu � vð Þ
p 1� vuð Þ 1� vð Þ

sin fð Þ
r

e�r2=4ct � 1� v

vu � v

� �

�1 tð Þ ¼ �b 1� 2vuð Þ
2p 1� vuð Þ

sin fð Þ
r

1þ vu � vð Þe�r2=4ct

1� vð Þ 1� 2vuð Þ

" #

p1 tð Þ ¼ mbB 1þ vuð Þ
3p 1� vuð Þ

sin fð Þ
r

1� e�r2=4ct
h i

ð18Þ

where s is the sum of the inplane normal stresses, b is the
fault slip, r, f are polar coordinate system centered at the
dislocation end, and c is the hydraulic diffusivity, propor-
tional to permeability. The plane-strain result corresponding
to equation (17), following a parallel derivation, is

�inst ¼ 1� v

1� 2v

� 	
1� 2vu

1� vu

� 	
�1 � g

2m 2ð Þ 1� vð Þ
p1

� �
; ð19Þ

There is no dependence on a because there is no vertical
strain in plane-strain. Combining (18) and (19) yields

�inst ¼ �b 1� 2vuð Þ
2p 1� vuð Þ

sin fð Þ
r

: ð20Þ

Surprisingly, while the mean stress, pore pressure, and
dilatational strain in the rock all are time dependent, the
strain within the elastic inclusion is time invariant! Rice et
al. [1978] showed that for a spherical cavity subject to
radial traction, the cavity wall deforms as if the interior had
undergone a uniform strain and is independent of the pore
pressure at the cavity boundary. This is analogous to the
result obtained here where the displacement in the inclusion
does not change with time as the fluid pressure drains. Note
that analytical dislocation solutions are limited to two
dimensions, and the behavior in three dimensions will
require numerical analysis.

3. Observations

[15] Two Mw 6.5 earthquakes occurred in the South
Iceland Seismic Zone (SISZ) on June 17 and 21, 2000.
Transient postseismic deformation following these earth-
quakes was observed in SAR interferograms of the region.
Jónsson et al. [2003] showed that these signals are well
explained by poroelastic relaxation, a conclusion strongly
supported by changes in water level in numerous geother-
mal wells within the SISZ. The duration of the water level
recoveries (4–6 weeks) agreed very well with the duration
of the deformation transient.
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[16] There are several dilatometers within the SISZ, with
one (SAU) located only a few kilometers west of the June
17 rupture, within a compressional quadrant. The coseismic
strain change (Figure 3) was roughly �12 mstrain, consis-
tent with some dislocation models of the June 17 earth-
quake. The coseismic step change was followed by a
roughly one month long transient strain recovery of
�7 mstrain (Figure 3).
[17] The duration of the strainmeter transient is compa-

rable to that observed in the InSAR and water level data,
however the sign is opposite to the expected poroelastic
response. The fully (un)drained elastic response of the rock
can be computed from a three dimensional elastic disloca-
tion solution using the (un)drained Poisson’s ratios. This
predicts that compressional strain should have further
increased as the rock drained. For example, assuming v =
0.2 and vu = 0.31, the undrained response (for a = 0 and one
slip model) is predicted to be �9.4 mstrain, whereas the
drained (t ! 1) response is �12.6 mstrain. For a disloca-
tion in a two-dimensional poroelastic medium the postseis-
mic strain in the meter should be independent of time
following the coseismic step (20), however we have no
corresponding result in three dimensions.
[18] We consider the possibility that permeability

decreases with depth in the crust so that only the shallow
crust drains over short time scales. Jónsson et al. [2003]
showed that the InSAR data could be equally well fit with
either drainage of the entire half-space or only the upper few
kilometers of crust. Following the same procedure, the
dilatational strain due to a specified pore-pressure change is

�1 xð Þ ¼ g

2pm

Z
V

p xð Þ 3 1þ að Þ x3 � x3ð Þ2

R5
� 1þ að Þ

R3

 !
dVx

ð21Þ

where R2 = (x1 � x1)
2 + (x2 � x2)

2 + (x3 � x3)
2 and the

integration is taken over the entire domain where p(x) 6¼ 0.

If a layer 0 < x3 < D drains completely, the post-seismic
pore pressure change is simply the negative of the coseismic
pore-pressure change, that is p = Bskk

cos/3. To avoid the
singularity at R = 0, we allow the entire half-space to drain,
which can be simply computed from the purely elastic
solutions with appropriate Poisson’s ratios, and then
repressurize the region x3 > D. We find (Figure 4) that the
strain is completely dominated by the drainage of the near
surface rocks (not unexpected given the 1/R3 behavior in
(21)). For small D the postseismic strain change is indeed
predicted to be positive (as observed), but the magnitude is
too small even for extreme values of vu � v to fit the
observations. For example, for D = .25 km the postseismic
strain recovery is less than 30% of the coseismic strain
change, whereas the observed is �70%.
[19] More complex models may be required to explain

the observed postseismic strain change. For example, lateral
variations in permeability could lead to significant horizon-
tal strains [e.g., Segall and Fitzgerald, 1998]. Alternatively,
if the rock volume containing the strainmeter is partially
bounded by fluid filled fractures, the fractures would
instantaneously transmit normal stresses to the strainmeters,
however those stresses (and strains) might relax over time
as fluid flowed out of the fractures.

4. Discussion and Conclusion

[20] As long as the rock surrounding the strainmeter
remains undrained at tidal periods the response to rapid
deformations, such as coseismic strain changes, is not
complicated by fluid flow. The strainmeter response to more
slowly developing processes, such as slow earthquakes or
many volcanic events, will require a convolution of the
source time function with the poroelastic response of the
rock surrounding the strainmeter. Finally, if significant

Figure 3. Volumetric strain observed at station SAU
between June 11 and July 19, 2000. Vertical axis is
the dilatational strain (microstrain) with compression
negative. The times of the two mainshocks are indicated
as vertical lines. The June 17 earthquake exceeded the
dilatometer’s dynamic range. The strain change from the
time of the earthquake to June 20 when the instrument was
reset is ��10 mstrain, indicating a coseismic strain of
��12m strain.

Figure 4. Postseismic strain at SAU when an upper layer
drains completely (corresponding to infinite permeability)
and the underlying half-space remains undrained (zero
permeability) computed from (21). The dashed curve shows
the strain in the rock, solid curve strain measured by a
strainmeter. Strains are normalized by the coseismic
(undrained) strain (at SAU), so that negative values
correspond to postseismic strain that is opposite in sign from
the coseismic response. Asterisk denotes the rock strain when
the entire half-space drains (D ! 1) from the difference
between the fully drained and undrained solutions.
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porefluid flow occurs at tidal periods, the strainmeter
response will be significantly more complex than outlined
here.
[21] The strain relaxation observed by a borehole strain-

meter close to an earthquake in the South Iceland seismic
zone can only be partially explained by fluid drainage in an
isotropic, poroelastic medium. The observations may be
better explained by a fracture dominated poroelastic
response; the subject of ongoing work.
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