
Short Note

On the Integrated Surface Uplift for Dip-Slip Faults

by Paul Segall and Elías Rafn Heimisson*

Abstract Interferometric Synthetic Aperture Radar observations often provide
maps of vertical displacement that can be integrated to estimate an uplift volume.
Relating this measure to source processes requires a model of the deformation.
Bignami et al. (2019) argue that the negative uplift volume associated with the 2016
Amatrice–Norcia, central Italy, earthquake sequence requires a coseismic volume
collapse of the hanging wall. Using results for dip-slip dislocations in an elastic
half-space we show that Vuplift � �P=4��1 − 2ν� sin�2δ�, in which P is the seismic
potency, ν is the Poisson’s ratio, and δ is the fault dip, consistent with an earlier result
of Ward (1986). For reasonable estimates of net potency for the 2016 Amatrice–
Norcia sequence, this simple formula yields uplift volume estimates close to that
observed. We conclude that the data are completely consistent with elastic dislocation
theory and do not require a volume collapse at depth.

Introduction

The availability of data from Interferometric Synthetic
Aperture Radar (InSAR) satellites provides maps of surface
displacement in a wide range of tectonic and volcanic envi-
ronments. With two or more imaging geometries, for example,
from ascending and descending satellite passes, it is possible
to reconstruct the vertical displacement (Wright et al., 2004).
This provides the opportunity to integrate the vertical displace-
ment field to estimate an effective uplift volume. Relating this
quantity to source processes requires a model of the deforma-
tion, which can sometimes yield unintuitive results. For exam-
ple, a point source of volume expansion (also known as Mogi
source) generates an uplift volume that, except in the case of
an incompressible half-space, exceeds the source volume
change (e.g., Segall, 2010, chapter 7).

Bignami et al. (2019) analyzed InSAR data associated
with the 2016 Amatrice–Norcia, central Italy, earthquake
sequence. Vertical displacements between 24 August 2016
and November 2016 exhibit uplift of as much as 14 cm, and
subsidence of up to 100 cm. They computed the integrated
subsidence of the hangingwall of 0:12 km3, whereas the inte-
grated uplift of the footwall is only 0:02 km3. The authors
argue that this “unbalance” of 0:10 km3 is inconsistent with
elastic rebound and requires collapse of a previously dilated
zone within the hanging wall to “accommodate the hanging
wall settlement”. However, for a compressible earth we
should not expect the integrated surface displacements to
vanish. Indeed, Ward (1986) noted that normal faults lead

to surface volume loss. Here, we derive an expression for
the surface volume change due to dip-slip faulting employing
the well-known results of Okada (1985). We then ask if the
InSAR observations from Amatrice–Norcia are consistent
with conventional dislocation theory, or if they require some
form of dilatant collapse.

Results

Below we show that for a point dip-slip source in a
homogeneous, isotropic elastic half-space that the integral
of the vertical displacements on the free surface is given by

EQ-TARGET;temp:intralink-;df1;313;294Vuplift �
P
4
�1 − 2ν� sin�2δ�; �1�

in which P is the seismic potency, ν is the Poisson’s ratio, and
δ is the fault dip, defined as in Okada (1985). Vuplift vanishes
for an incompressible material (ν � 0:5), or for vertical and
horizontal faults, as it must by symmetry. However, for
ν � 0:25, δ � 45° we have Vuplift � P=8. Further, the result
is independent of source depth. Because any dislocation can
be represented as a summation of point sources, equation (1)
also applies to a finite dislocation, or to slip on multiple
faults. Equation (1) is consistent with the result of Ward
(1986), which gives Vuplift for a general moment tensor.

Derivation

For a point dip-slip dislocation with potency P � sΣ in
which s is the fault slip and Σ is the fault area, the vertical
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displacement u3 evaluated at the surface �x3 � 0� of an
elastic half-space is

EQ-TARGET;temp:intralink-;df2;55;709u3�x1; x2; x3 � 0� � −
P
2π

�
3dpq
r5

− I05 sin δ cos δ
�

�2�

(Okada, 1985), in which d is the depth of the fault and δ is the
dip; if sin�2δ� > 0 the slip is reverse. Also, following Okada
(1985) notation

EQ-TARGET;temp:intralink-;df3a;55;631p � x2 cos δ� d sin δ; �3a�

EQ-TARGET;temp:intralink-;df3b;55;588q � x2 sin δ − d cos δ; �3b�

EQ-TARGET;temp:intralink-;df3c;55;567r2 � x21 � x22 � d2 � x21 � p2 � q2; �3c�
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Here, x1 is the coordinate parallel to strike and x2 is
perpendicular.

The volume of the uplift is the integral over the surface
of the vertical displacement u3,

EQ-TARGET;temp:intralink-;df4;55;443Vuplift �
Z ∞
−∞

Z ∞
−∞

u3�x1; x2; x3 � 0�dx1dx2: �4�

Consider the first term in equation (2), independent of ν. The
integral is proportional to
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The second term in equation (5) is odd in x2 and therefore
vanishes when integrated over the full domain. For the first
term in equation (5), define ρ2 � x21 � x22 and then transform
the integral to polar coordinates �ρ; θ�, noting x2 � ρ sin�θ�
and r2 � ρ2 � d2. The area element on the free surface
becomes dx1dx2 → ρdρdθ.

The first term in (5) thus becomes

EQ-TARGET;temp:intralink-;df6a;55;236 sin δ cos δ
Z
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�ρ2 � d2�5=2 ρdρdθ � �6a�
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Here, the first step makes use of sin2�θ� � �1 − cos�2θ��=2,
and the second that ρdρ � rdr. Thus, the first integral

vanishes, as it must because it is independent of ν and
Vuplift must vanish for an incompressible material.

The integral over the first term in I05 is proportional to
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Following the same procedure as aforementioned, the second
term becomes
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Combining equations (7) and (8), and simplifying yields
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Combining this with equations (4) and (2) yields equation (1).

Discussion and Conclusion

We have shown that for a compressible earth the uplift
volume is generally positive for reverse faults (sin�2δ� > 0)
and negative for normal faults (sin�2δ� < 0). The vertical
displacements are antisymmetric for vertical faults, so the
net volume change is zero.

The Amatrice–Norcia sequence has a net moment mag-
nitude of Mw 6.5, corresponding to a seismic moment of
6:2 × 1018 N · m. For a shear modulus 1010 Pa, we estimate
P of 6:2 × 108 m3. For a dip δ � −50° and ν � 0:25, equa-
tion (1) yields a net volume decrease of 0:08 km3, which
is within 20% of the Bignami et al. (2019) estimate
of 0:10 km3.

We must be somewhat cautious of the simple estimate,
which does not account for heterogeneous elastic properties
that are certain to exist. There is also uncertainty in the
proper value of shear modulus to use in deriving the potency,
as well as the average fault dip. We do not discriminate, in
this simple estimate, between slip on the main and antithetic
fault. Furthermore, the analytical result integrates over the
entire free surface, whereas the Bignami et al. (2019) calcu-
lation was over a finite domain in which the absolute value of
the vertical displacement exceeded 3 cm. We have found
that, because the displacements decay slowly, limiting the
integration domain can substantially overpredict the com-
puted volume change. For a normal fault, this tends to under-
estimate the smaller uplift volume of the footwall. For
example, only integrating over the domain that is �3 times
the source depth yields a volume estimate that is a factor of
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two larger (in absolute value) than that given by equation (1).
This effect could alone explain the 20% discrepancy between
our back of the envelope calculation and the Bignami et al.
(2019) result.

We conclude that a 20% discrepancy is insignificant,
and the InSAR observations from the Amatrice–Norcia
sequence are consistent with conventional dislocation theory.
We do not claim that the elastic dislocation model is unique.
Occam’s razor, however, suggests that a simpler, well-tested
theory (elastic dislocation theory) should be preferred.

Data and Resources

This is a theoretical article and contains no data.
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