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Abstract

We investigate the problem of estimating magma chamber geometry using In-

SAR observations of Sierra Negra volcano, Galápagos. Ascending and descending

interferograms are combined to determine vertical and one horizontal component of

displacement. The ratio of maximum horizontal to vertical displacement suggests

a sill-like source. Spherical or stock-like bodies are inconsistent with the data. We

estimate the geometry of the sill assuming a horizontal, uniformly pressurized crack

with unknown periphery and depth. The sill is discretized into small elements that

either open, and are subjected to the pressure boundary condition, or remain closed.

We find the best-fitting sill to be located beneath Sierra Negra’s inner caldera at

a depth of about 2 km. Using boundary element calculations we show that any

magma chamber with a flat top coincident with the sill model fits the data equally

well. The data are insensitive to the sides and bottom of the magma chamber.

Key words: Sierra Negra Volcano; Galápagos; Synthetic Aperture Radar
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1 Introduction

Six volcanoes in the western Galápagos islands of Fernandina and Isabela (Fig.

1) have been actively deforming since 1992 (Amelung et al., 2000). Among

these Sierra Negra is by far the most voluminous and has been one of the most

active. It has experienced 11 historical eruptions, including most recently the

0.9 km3 eruption on the north flank of the volcano in 1979 (Reynolds et al.,

1995). Sierra Negra’s shallow caldera (110 m in maximum depth) is the largest

by area in the western Galápagos (59.8 km2) (Munro and Rowland, 1996). The

caldera is characterized by a C-shaped sinuous ridge, composed of a complex

set of normally faulted blocks with steep (60◦ - 90◦) outward dipping fault

scarps (Reynolds et al., 1995).

The center of Sierra Negra’s caldera uplifted from 1992 to 1997, causing a

line-of-sight (LOS) displacement of about 1.6 meters in InSAR observations

(Amelung et al., 2000). The rapid inflation was followed by trapdoor faulting

sometime in 1997-1998, which occurred along the pre-existing fault system

inside the south moat of the caldera. This event was discovered using InSAR

observations (Amelung et al., 2000). The faulting was also confirmed by field

study and range offset measurements (Jónsson et al., in review 2004). The

measured maximum slip along the fault plane was about 1.5 meters (Jónsson

et al., in review 2004). After the trapdoor faulting event, Sierra Negra resumed

uplift from September 1998 to March 1999 with a maximum LOS displacement

of 30 cm. This uplift event was successfully modeled as a sill with spatially

varying opening distribution by Amelung et al. (2000). A GPS network on

Sierra Negra showed that subsidence initiated sometime between late 2000

and early 2001, at rates of up to 9 cm/yr (Geist et al., in review 2004).
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In this paper, we reanalyze InSAR data, incorporating a more rigorous inves-

tigation of the geometry of the putative magma body. While we refer to the

deformation source as a magma body, it may include a hydrothermal compo-

nent. Although Amelung et al. (2000)’s sill model fits the observations very

well, it does not prove that a sill is the only magma chamber geometry that

can fit the data. It is well known that there is a non-uniqueness in the shape of

plausible deformation sources given only vertical displacement data (Dieterich

and Decker, 1975). Given vertical and horizontal displacement data, however,

it is possible to distinguish sills from spherical chambers or stocks (Fialko

et al., 2001a). Here we first constrain the shape of the magma chamber by

reconstructing vertical and horizontal components of the surface displacement

using two interferograms, one from an ascending orbit and the other from

a descending orbit. This approach is similar to that of Fialko et al. (2001b)

but does not require calculation of azimuth offsets because we need only two

components to constrain the shape.

Amelung et al. (2000) allow the sill opening to vary spatially to fit the data,

but did not impose any additional physical constraints on the shape. We ex-

plore below a new inversion approach, in which the deformation source is

restricted to be a uniformly pressurized sill whose plan outline is unknown,

appropriate for a magmatic intrusion. In this case the geometry of the sill and

the magma pressure are the unknowns. Compared to the previous kinematic

model (Amelung et al., 2000), in which sill opening is constrained only by a

Laplacian smoothing constraint, our new approach dramatically reduces the

number of degrees of freedom in the inversion.

An approach with a pressure boundary condition is advantageous because the

magma pressure is directly relevant to fluid processes in the magma chamber.
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In particular, the total magma pressure pm is the sum of the excess magma

pressure ∆p and the lithostatic pressure pL,

pm = ∆p + pL. (1)

We estimate ∆p from the InSAR data. However, it should be noted that the

estimated ∆p represents only the change in pressure during the time period of

the InSAR observations. Assuming a lithostatic stress state, pL = ρ g d, where

ρ is the density of overlying rock, d is the depth of the magma body, measured

from the caldera floor. Since the magma chamber is known to be located inside

the flat caldera of Sierra Negra at shallow depth (Amelung et al., 2000), we

simplify the problem and assume an elastic half-space, ignoring topograph-

ically induced stresses (Pinel and Jaupart, 2003). Given the excess magma

pressure, we can calculate the stress in the neighborhood of the sill using the

pressure as boundary condition. Knowledge of the stress field allows us to

consider crack initiation and propagation criteria, since cracks may propagate

at roughly constant pressure. Moreover, by calculating stress fields around the

magma chamber caused by magma pressurization, we should be able to pre-

dict the direction of crack propagation, and thus the evolution of the system.

Overall, the new method relates to physical properties of the magma itself,

and will better describe the mechanical interaction of the magma intrusion

with the surrounding rock.

Later in this paper we find that even with both vertical and horizontal dis-

placement data at the Earth’s surface we cannot uniquely determine the shape

of the magma chamber. We use the boundary element technique to explore the

range of models consistent with the InSAR data, providing clearer constraints

on magma chamber geometry.
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2 Shape of the Magma Chamber

Non-uniqueness of the shape of subsurface magma chambers (e.g. Dieterich

and Decker, 1975) is greatly reduced if both vertical and horizontal deforma-

tion data are available (Fialko et al., 2001a). Sills produce little horizontal dis-

placement relative to the peak uplift, as compared to equi-dimensional magma

bodies which generate more horizontal deformation. Since imaging radar satel-

lites are side-looking, interferograms record horizontal deformation as well as

vertical deformation. Using data from both ascending and descending orbits,

it is possible to determine the vertical displacement and one component of

horizontal displacement.

Satellites can acquire data when they pass from south to north (ascending)

and from north to south (descending). Data from ascending and descending

orbits have different imaging geometry (look direction), providing two lin-

early independent LOS measurements. In principle, we can calculate the 3-D

displacement field, using data from both ascending and descending orbits (Fi-

alko et al., 2001b), by solving for three orthogonal components of the surface

displacement field from the two LOS displacements and also the interfero-

gram azimuth offsets, which are acquired by cross-correlating two amplitude

images. However, in the case of Sierra Negra for the time period when the

ascending/descending pair is available, the maximum horizontal surface dis-

placement is less than 10 cm. The accuracy of the azimuth offsets is about

12.5 cm, if we assume that we can measure pixel offsets locally between two

images to 1/32 of a pixel (Jónsson et al., 2002). Hence, the signal-to-noise

ratio is not sufficient for the azimuth offsets to be meaningful, and we cannot

fully reconstruct the 3-D displacement field. Consequently, the vertical com-
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ponent and only one horizontal component can be determined. In the case of

volcano deformation, assuming near-circular symmetry allows the one compo-

nent of horizontal displacement to be considered as a radial component. This

is adequate since we only need vertical and radial components to reduce the

non-uniqueness of the shape of magma chambers.

The ERS-2 data we used are shown in Table 1. Fig. 2 shows a map view of

the ascending and descending orbits and the idealized surface displacement

vectors due to volcano deformation. Using the same notation as Fialko et al.

(2001b), the LOS vector can be expressed in terms of displacements, Ui, as:

dlos = [ Un sin φ − Ue cos φ ] sin λ + Uu cos λ, (2)

where φ is the azimuth of the satellite heading vector (positive clockwise from

the North), and λ is the radar incidence angle. Since the orbit inclination of

the ERS-2 satellite is 98.5◦, which is the angle between the heading vector

of the ascending satellite and the easting vector at the equator, the LOS

displacement fields contain horizontal components that are off by 8.5◦ from

easting or westing vectors. Thus, the φ’s for ascending and descending orbits

are -8.5◦ and 188.5◦ respectively. We approximate these values to 0◦ and 180◦.

With this approximation, Eq. 2 reduces to,

dlos = ∓Ue sin λ + Uu cos λ, (3)

where the minus sign is for data from ascending orbit and the plus sign is

for data from descending orbit. Since there are two unknowns and two equa-

tions we can solve for Uu and Ue. We verify the accuracy of this approxima-

tion by reconstructing the vertical and radial components from a well known
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circularly symmetric deformation source. Fig. 3 shows the true vertical and

radial components due to the Mogi point source (Mogi, 1958) and the recon-

structed components, derived from simulated interferograms from ascending

and descending orbits using the ERS-2 satellite’s actual orbit inclination. The

interferograms were transformed into vertical and easting components. The

approximation-induced error is about 1% in this case.

The actual ascending and descending interferograms and the reconstructed

vertical and horizontal components are shown in Fig. 4. The interferograms

have been processed using the Jet Propulsion Laboratory/Caltech repeat or-

bit interferometry package ROI PAC. A 90-meter posting Digital Elevation

Model (DEM) from the Shuttle Radar Topography Mission (SRTM) was used

to subtract the topographic signal. Note that neither the vertical nor the east-

ing component is perfectly symmetric, implying a lack of symmetry in the

deformation source. In order to check the effect of this asymmetry, we imple-

mented a simulation which reconstructed the east component of displacement

for different orientations of the deformation source (Fig. 5). We rotated the

best-fit model, which will be described in the inversion section, and recon-

structed the east component from the rotated models. This figure shows how

far the model is from circular symmetry. Specifically, each subfigure demon-

strates the symmetry about N-S axis through the center of the image. Note

that a 60◦ model rotation shows the best symmetry about N-S axis, implying

that the deformation source has an axis of symmetry whose strike is about

60◦ from the north. This axis of symmetry can also be seen in the vertical

component (Fig. 4c).

Fig. 6 shows the profiles of vertical and east components along A-A’ in Fig.

4d. The line A-A’ was chosen so that it includes both the maximum vertical
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displacement and maximum horizontal displacement. The ratio of the max-

imum horizontal to maximum vertical displacement is about 0.3, consistent

with a sill, but inconsistent with a spherical (Mogi) source for which the ratio

is about 0.4 (Fialko et al., 2001a). Thus, this observation supports the idea

that the magma reservoir beneath Sierra Negra is a sill, or a sill-like body.

3 Estimation of Best-fitting Sill Geometry

We determined the sill geometry using a 3-D boundary element method plus

a non-linear inversion scheme. In this approach, the geometry of the sill is

described by its periphery or fracture tip-line and its depth. We used the

same SAR scenes (1998/09/26 and 1999/03/20) that Amelung et al. (2000)

used to form an interferogram, rather than the ascending and descending pair

used in the previous section (Table 1), to facilitate comparison of our results

with the kinematic model of Amelung et al. (2000). The deformation pattern

in the previous section (Fig. 4a,b) is similar in shape to the interferogram

used for modeling (Fig. 10a) but smaller in amplitude. We compared the

two interferograms by scaling the one for inversion (s1) to fit the one in the

previous section (s2). To do this we estimate a scale factor a and phase offset

b minimizing,

min
a, b

||y − (ax + b)||2, (4)

The phase offset b is necessary because the two interferograms do not share

a master image. Fig. 7 shows that the surface deformation is nearly identical

and implies that the deformation sources in the two time periods share the

same geometry. Thus, the only difference between the two time periods should
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be the magnitude of the excess magma pressure. In general, if the deformation

pattern is the same in a number of interferograms, we can fix the geometry of

the deformation source by modeling only one of the interferograms. For this

reason, we can now model the deformation source using the third interfero-

gram (Table 1), starting from the result of the previous section; that is, the

deformation source is a sill.

3.1 Forward Modeling

We assume that uniform pressure acts everywhere on the surface of the sill,

with no shear traction. A uniform pressure boundary condition is physically

more reasonable than a kinematic displacement boundary condition, because

Sierra Negra commonly erupts low viscosity basaltic magma which should be

close to hydrostatic pressure equilibrium.

We divide the crack into elements that either opened or remained closed in

order to determine the sill geometry. The uniform pressure boundary condition

is enforced on all open elements. Various combinations of open and closed

elements are selected to form a sill. Once a candidate sill periphery, depth,

and uniform pressure are selected, the opening distribution of the entire sill

is uniquely determined by a boundary element calculation. This reduces the

number of degrees of freedom of the boundary value problem relative to the

kinematic inversion.

We wish to use the boundary value problem as the forward function in an

inversion, therefore we introduce a set of binary parameters describing whether

each element in a grid is open or closed. Fig. 8 shows a simple example of
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a model grid. A value of zero at a grid cell means that the sill element is

closed (i.e. not a part of the sill) and a “one” means that the sill element is

open. Only the open elements are subject to the uniform internal pressure

condition. Determining the geometry of the sill is equivalent to determining

the appropriate combination of zeros and ones.

We choose depth, excess magma pressure, and one combination of the binary

parameters. These suffice to determine the opening distribution in the en-

tire model grid uniquely, using a 3-D boundary element calculation. Surface

deformation is then derived from the sill opening using Green’s functions in-

tegrated over a rectangular element in an isotropic homogeneous linear elastic

half-space (e.g. Okada, 1992). The shear modulus of the elastic half-space was

assumed to be 30 GPa, and 0.25 was assumed for Poisson’s ratio. Since the

InSAR data are sensitive only to the ratio of the excess magma pressure to the

shear modulus, decreasing the shear modulus by a factor of 3, would decrease

the estimated excess magma pressure by the same factor.

3.2 Nonlinear Inversion

Once the forward methodology is defined, we can proceed to select the best-

fit model through inversion. The goal here is to estimate the best-fitting sill

geometry, excess magma pressure, and depth. The binary nature of the crack

opening makes the problem highly nonlinear. In this case, the misfit or ob-

jective function is not quadratic, thus convergence to the global minimum is

not guaranteed. Moreover, binary parameters are discrete and thus not differ-

entiable. Therefore a gradient-based inversion scheme is not possible. As our

model grid size is 16 by 18, the number of possible combination of the binary
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parameters is 2288. Because it is infeasible to test all possibilities, we employed

simulated annealing, a stochastic nonlinear inversion scheme (Metropolis et al.,

1953).

Simulated annealing was proven to converge with an infinite number of itera-

tions at a constant (metaphorical) temperature parameter (Rothman, 1986).

The cooling schedule is important as it determines whether the global mini-

mum can be achieved or not, and it also affects the speed of convergence. We

use a simulated annealing code (Cervelli et al., 2001) that applies Basu and

Frazer type rapid determination of critical temperature (Basu and Frazer,

1990). For sampling at each temperature we use the heat bath algorithm,

where one parameter is perturbed at one iteration while the others are fixed.

The code was modified to accommodate the binary parameters.

The data vector in our inversion is the observed LOS displacements dlos. The

size of the original InSAR data set (16384 pixels) was reduced to 674 points

using quadtree partitioning (Jónsson et al., 2002) to make the problem man-

ageable. The model vector m contains the set of binary parameters and the

excess magma pressure ∆p. Thus,

dlos = g(m) + ε, (5)

where ε is data error plus errors in the forward model, and the function g

includes the dislocation model and the LOS projection of the surface displace-

ment. We adopt an L2 objective function,

Φ = ||d − g(m) ||2. (6)

The other dislocation model parameters were fixed in the sill plane. The depth
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of the sill was estimated by examining the residual pattern as well as the L2-

norm of the residual at depths ranging from 1 km to 3 km in 100 m depth

increments.

Solutions with isolated individual open elements require physically unrealistic

magma pressure (hundreds of MPa). In order to preclude this from our models,

we put an upper bound on the excess magma pressure. If a certain choice of

geometry yields a magma pressure that is greater than the upper bound, then

the candidate geometry is rejected.

We used physical reasoning to derive an initial value for the upper bound on

melt pressure. Fig. 9 shows a simplified vertical cross-section containing the

magma chamber. Assuming the magma pressure is at equilibrium at depth D,

the pressure in the magma chamber pm propagated through the melt column

can be written as,

pm = ρs g D − ρm g (h + D − d) (7)

where ρs is the density of solid rock, and ρm is the melt density. The excess

magma pressure can then be calculated by subtracting the lithostatic pressure

due to the overloading rock:

∆p = pm − ρs g d. (8)

For example, if we take ρs = 2.9 g cm−3 (Hill and Zucca, 1987), ρm = 2.6 g cm−3

(Savage, 1984), h = 2.4 km, D = 37 km, and d = 2 km, we compute an ex-

cess magma pressure of 7.6 MPa. Here the h was derived from the difference

between the altitude of Sierra Negra’s caldera and the average altitude of a cir-

cular region about 100 km in radius, centered at Sierra Negra. The thickness of
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the lithosphere D was calculated using the thermal diffusivity κ = 1 mm2 s−1

(Turcotte and Schubert, 2002) and the age of the lithosphere t = 8 Myr (Sal-

lares and Charvis, 2003) in the following equation (Turcotte and Schubert,

2002),

D = 2.32
√

κ t. (9)

Starting from the initial value of excess magma pressure, several choices of

the upper bound on excess magma pressure were tested for each depth, and

we selected the one that produced reasonable connectivity and the best fit.

Fig. 10 shows the interferogram used for modeling in this part of the study

and the best-fit model derived from simulated annealing. An upper bound

of 5 MPa was placed on the excess magma pressure. Although disconnected

and isolated open elements were effectively suppressed by the upper bound,

a few isolated segments remained. Eliminating these did not change the fit to

the data significantly because the isolated segments open very little given the

estimated excess magma pressure. The best-fitting model after removing the

isolated segments is shown in Fig. 11b, in comparison to Amelung et al.’s best-

fitting kinematic model (Fig. 11a). Note that the estimated sill is restricted

to the inner caldera and is bounded by the sinuous ridge. The depth and

excess magma pressure are estimated as 1.9 km and 4.5 MPa respectively.

The colors of the sill elements represent the inferred opening distribution,

with the maximum being 0.5 m. The total volume change is calculated as 6.7

million cubic meters. If we attribute this volume change to magma influx, the

average magma filling rate is about 1.1 million cubic meters per month for the

time period 1998/09/26 to 1999/03/20. The overall distribution of estimated

sill opening is in good agreement with Amelung et al.’s kinematic model as

13



expected.

4 Discussion

In this section we further explore the non-uniqueness of the shape of the

magma chamber. Although an equi-dimensional magma chamber or stock was

rejected previously, our analysis does not prove that the source of deformation

is a thin sill. If the radius of the sill is large compared to the depth, the surface

deformation is dominated by displacement of the sill’s upper surface. We thus

suspect that surface deformation would be insensitive to the sides and bottom

of the chamber.

We test this using a boundary element code, Poly3D (Thomas, 1993). The

Poly3D superposes the solution for an angular dislocation (Yoffe, 1960; Comni-

nou and Dundurs, 1975) to calculate the displacements, strains, and stresses

induced in an elastic whole- or half-space by planar polygonal elements of

displacement discontinuity and boundary element method. Fig. 12 shows the

geometry of a flat-topped diapir used in this test. The depth to the top is 1.9

km, and the radius of the top is 3 km, resembling the estimated geometry

of the sill at Sierra Negra. The sides of the diapir are dipping inward at an

angle of 45◦. The lower part of the diapir has a hole, whose radius is 600 m.

This is done to avoid numerical instability due to rotation of the inner region

with respect to the outer region. The surface deformation is compared to the

surface deformation due to a circular disk or a sill. The geometry of the sill

is simply the top part of the diapir. From Fig. 12 it is clear that flat-topped

diapirs produce almost identical surface deformation to sills, as long as the

depth is small compared to the radius. Thus, while we have greatly narrowed
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the class of viable magma chamber shapes, the deformation data alone cannot

uniquely resolve this question.

To differentiate between the two models, we consider thermal interaction of

the intruded magma body with the host rock. If we consider a single intrusion

event, the time required for complete solidification of the sill can be calculated

by,

ts =
b2

4 κλ2
2

, (10)

where b is the half-width of a sill of uniform thickness and λ2 is a dimension-

less variable defined as λ2 = ym/(2
√

κt), where ym is the distance from the

boundary between the sill and the country rock to the solidification boundary

within the sill. The variable λ2 is numerically determined from the following

transcendental equation,

L
√

π

c(Tm − T0)
=

e−λ2
2

λ2(1 + erf λ2)
, (11)

where L is the latent heat of fusion, c is the specific heat, and Tm and T0 are

melt temperature and the initial wall rock temperature (Turcotte and Schu-

bert, 2002). Taking L = 320 kJ kg−1, Tm − T0 = 1000 K, c = 1.2 kJkg−1K−1,

we get λ2 = 0.73. Then with κ = 1 mm2s−1 and the thickness of the sill of 0.5

m (b = 0.25 m), the time required for this intrusion to completely solidify is

about 8 hours (Turcotte and Schubert, 2002). Considering that 0.5 m was the

maximum opening, the intruded sill would have solidified even faster.

The uplift observed at Sierra Negra by InSAR data since 1992 has shown a

consistent spatial pattern for several years except when there was trapdoor

faulting. In particular, the pattern prior to and after the trapdoor faulting was
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very similar (Amelung et al., 2000). Therefore, it is unlikely that numerous

thin sills intruded and solidified during this time period. If separate sills in-

truded and solidified, there would be no particular reason that they would each

produce the same surface deformation pattern. Instead, it is more likely that

a thicker continuously liquid magma chamber experienced pressure increases,

or equivalently volume increases, which in turn produced the surface deforma-

tion. If this was the case, we can conversely calculate the minimum thickness

of the magma chamber for it to have remained liquid over the time period of

observation. Taking ts = 7 yrs in Eq. 10, b is calculated to be approximately

20 m, and thus the minimum thickness is about 40 m.

Another way to distinguish between different magma chamber geometries, is

to consider the perturbation in the stress field due to magmatic intrusions.

Although the surface displacement fields due to a sill and a diapir are not

distinguishable, the stress fields generated by the two different magma bodies

are different. The stress state is difficult to measure directly. However, the

orientation of fissure eruptions on the flank of Sierra Negra is an important clue

to the stress field, since dikes and sills are known to propagate perpendicular to

the least compressional principal stress. Interestingly Chadwick and Dieterich

(1995), who compared stress directions with the orientations of dikes on Sierra

Negra, favor a flat-topped diapir, equivalent to one of the models we find to

be consistent with the InSAR data.

5 Conclusions

We have narrowed the class of candidate models consistent with the InSAR

observations of Sierra Negra. We have shown the data require a flat-topped
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magma body at a depth of about 2 km restricted to the inner caldera. Defor-

mation data alone, however, cannot uniquely determine the geometry of the

sides or feeder conduit – both a diapir and a sill with uniform internal pressure

provide reasonable fits to the data. The InSAR data do constrain the lateral

geometry of the magma chamber to a high resolution.

We solved for the shape of the sill, or equivalently the flat top of the diapir.

A physically reasonable uniform pressure boundary condition was used in

the inversion. The estimated sill opening was similar to that estimated by

Amelung et al. (2000). Fitting the data equally well with reduced number of

degrees of freedom suggests that the physical constraint used in this study was

reasonable. It gives physical insight to conditions in and around the magma

chamber. The estimated excess magma pressure can be used to infer the stress

field in the surrounding rock. This will be useful for estimating the crack

propagation criteria and predicting the direction of crack propagation, which

may lead to an eruption.

The technique that uses data from ascending and descending orbits to resolve

the shape of magma chambers can be applied to any type of deformation

source particularly those with radial symmetry. The binary-parameter inver-

sion scheme used to resolve the detailed geometry of the sill can be applied to

any type of uniform pressure planar deformation source.
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Table 1

Interferograms Used in This Study

Orbit direction Scene 1 Scene 2 T⊥ B⊥

Ascending 1998/10/31 1999/02/13 3.5 months 152 m

Descending 1998/11/05 1999/02/18 3.5 months 448 m

Ascending 1998/09/26 1999/03/20 6 months 50 m

Fig. 1. Shaded relief topographic map of Galápagos Islands. The study area is

indicated with a black box, which includes the caldera of Sierra Negra volcano.
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Fig. 2. Map view of ascending and descending orbit imaging geometry and idealized

surface displacement of volcano deformation.

Fig. 3. Circularly symmetric deformation source was used to estimate the satellite

orbit inclination induced error. The vertical and radial component are reconstructed

in the same way as the data was analyzed. In the case of circular symmetry, the

maximum error due to the orbit inclination not being 90◦ is about 1%.
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Fig. 4. Interferograms from ascending (a) and descending (b) orbits with temporal

baselines of 1998/10/31 - 1999/02/13 and 1998/11/05 - 1999/02/18 respectively.

One color cycle represents 5 cm change of range in LOS direction of satellite. In-

terferometric displacements can be separated into vertical (c) and horizontal (d)

components using the imaging geometries of the two orbits.
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Fig. 5. Asymmetry test using the best-fit model. The best-fit model was rotated

from 0◦ to 150◦ in 30◦ increments. θ is the angle of counterclockwise rotation. At

each angle two interferograms from ascending and descending orbit were simulated,

and it was transformed into east component as described in section 2.
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Fig. 6. Profile along A-A’ in Fig. 4d. Five lines were averaged to produce smooth

plot. Absolute value of east component is plotted to represent radial component.
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Fig. 7. Least-squares fitting results. (a) Interferogram for the time period of

1998/10/31 - 1999/02/13. (b) Scaled version of the the interferogram for 1998/09/26

- 1999/03/20. (c) Residual. (d) Profiles through (a) and (b). The blue solid line is the

S-N profile of (a), and the red solid line is the W-E profile of (a). The black dashed

lines are the corresponding profiles of (b). One color cycle in the interferograms and

residual represents 5 cm of LOS displacement.
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Fig. 8. Simple example of model grid that shows four open sill elements. The upper

right corner sill element will open widest under uniform pressure.

Fig. 9. Schematic vertical section of the lithosphere.
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Fig. 10. Observed interferogram (a) and simulated interferogram (b) from the

best-fit model (d). The residual (c) between the data and the model shows dif-

ferences smaller than 2.5 cm, half the magnitude of one color cycle in (a) and (b).
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Fig. 11. (a) Best-fit model of Amelung et al. using a sill model with spatially varying

opening distribution. (b) Best-fit model with uniform pressure boundary condition.

Depth was estimated as 1.9 km in both cases.

Fig. 12. (a) A flat-topped diapir with its sides dipping 45◦. The depth to the top of

the diapir is d, and the radius of the top of the diapir is R. (b) Surface deformation

due to the diapir and a sill whose geometry is the same as the top of the diapir.

The line of observation points are located on the surface of the half-space starting

from directly above the center of the diapir. The x-axis is the distance normalized

by the radius, and the y-axis is displacement normalized by the maximum vertical

displacement.
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