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Abstract—High-resolution digital elevation models (DEMs) are
often limited in spatial coverage; they also may possess systematic
artifacts when compared to comprehensive low-resolution maps.
Here we correct artifacts and interpolate regions of missing data
in airborne Topographic Synthetic Aperture Radar (TOPSAR)
DEMs using a low-resolution Shuttle Radar Topography Mission
(SRTM) DEM. We use a prediction error (PE) filter to interpolate
and fill missing data so that the interpolated regions have the
same spectral content as the valid regions of the TOPSAR DEM.
The SRTM DEM is used as an additional constraint in the inter-
polation. We use cross-validation methods to obtain the optimal
weighting for the PE filter and SRTM DEM constraints.

Index Terms—Interpolation, digital elevation model (DEM),
Topographic Synthetic Aperture Radar (TOPSAR), Shuttle Radar
Topography Mission (SRTM), inversion, prediction error (PE)
filter.

I. INTRODUCTION

YNTHETIC aperture radar interferometry (InSAR) is
Sa powerful tool for generating digital elevation models
(DEMs) [1]. The TOPSAR and SRTM sensors are primary
sources for the academic community for DEMs derived from
single-pass interferometric data. Differences in system param-
eters such as altitude and swath width (Table I) result in very
different properties for derived DEMs. Specifically, TOPSAR
DEMs have better resolution, while SRTM DEMs have better
accuracy over larger areas. TOPSAR coverage is often not
spatially complete.

Topographic Synthetic Aperture Radar (TOPSAR) DEMs
are produced from cross-track interferometric data acquired
with the National Aeronautics and Space Administration’s
Airborne Synthetic Aperture Radar (AIRSAR) system mounted
on a DC-8 aircraft. Although the TOPSAR DEMs have a higher
resolution than other existing data, they sometimes suffer from
artifacts and missing data due to roll of the aircraft, layover, and
flight planning limitations. The DEMs derived from the Shuttle
Radar Topography Mission (SRTM) have lower resolution, but
fewer artifacts and missing data than TOPSAR DEMs. Thus,
the former often provides information in the missing regions of
the latter.

We illustrate joint use of these datasets using DEMs acquired
over the Galdpagos Islands. Fig. 1 shows the TOPSAR DEM
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TABLE 1

TOPSAR MISSION VERSUS SRTM MISSION

Mission TOPSAR SRTM
Platform DC-8 aircraft ~ Space shuttle

Nominal altitude 9 km 233 km
Swath width 10 km 225 km
Baseline 2.583 m 60 m
DEM resolution 10 m 90 m
DEM coord. system none Lat/Lon
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Fig. 1. Original TOPSAR DEM of Sierra Negra volcano in the Galdpagos
Islands (inset for location). The pixel spacing of the image is 10 m. The boxed
areas are used for illustration later in this paper. Note that there are a number
of regions of missing data with various shapes and sizes. Artifacts are not
identifiable due to the variation in topography.

used in this study. The DEM covers Sierra Negra volcano on
the island of Isabela. Recent InSAR observations reveal that the
volcano has been deforming relatively rapidly [2], [3]. InSAR
analysis can require use of a DEM to produce a simulated in-
terferogram required to isolate ground deformation. The effect
of artifact elimination and interpolation for deformation studies
will be discussed later in this paper.

The TOPSAR DEMs have a pixel spacing of about 10 m,
sufficient for most geodetic applications. However, regions of
missing data are often encountered (Fig. 1), and significant
residual artifacts are found (Fig. 2). The regions of missing
data are caused by layover of the steep volcanoes and by flight
planning limitations. Artifacts are large-scale and systematic
and most likely due to uncompensated roll of the DC-8 aircraft
[4]. Attempts to compensate this motion include models of
piecewise linear imaging geometry [5] and estimating imaging
parameters that minimize the difference between the TOPSAR
DEM and an independent reference DEM [6]. We use a non-
parameterized direct approach by subtracting the difference
between the TOPSAR and SRTM DEMs.
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Fig. 2. (a) TOPSAR DEM and (b) SRTM DEM. The tick labels are pixel
numbers. Note the difference in pixel spacing between the two DEMs.
(c) Artifacts obtained by subtracting the SRTM DEM from the TOPSAR DEM.
The flight direction and the radar look direction of the aircraft associated
with the swath with the artifact are indicated with a long and short arrows,
respectively. Note that the artifacts appear in one entire TOPSAR swath, while
it is not as serious in other swaths.
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The recent SRTM mission produced nearly worldwide topo-
graphic data at 90-m posting. SRTM topographic data are in fact
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Fig. 3. The flow-diagram of the artifact elimination.

produced at 30-m posting (1 arcsecond); however, high-resolu-
tion datasets for areas outside of the U.S. are not available to the
public at this time. Only DEMs at 90-m posting (3 arcsecond)
are available to download. For many analyses, finer scale eleva-
tion data are required. For example, a typical pixel spacing in a
spaceborne SAR image is 20 m. If the SRTM DEMs are used
for topography removal in spaceborne interferometry, the pixel
spacing of the final interferograms would be limited by the to-
pography data to at best 90 m. Despite the lower resolution, the
SRTM DEM is useful because it has fewer motion-induced ar-
tifacts than the TOPSAR DEM. It also has fewer data holes.

The merits and demerits of the two DEMs are in many
ways complementary to each other. Thus, a proper data fu-
sion method can overcome the shortcomings of each and
produce a new DEM that combines the strengths of the two
datasets: a DEM that has a resolution of the TOPSAR DEM
and large-scale reliability of the SRTM DEM. In this paper, we
present an interpolation method that uses both TOPSAR and
SRTM DEMs as constraints.

II. IMAGE REGISTRATION

The original TOPSAR DEM, while in ground-range coor-
dinates, is not georeferenced. Thus, we register the TOPSAR
DEM to the SRTM DEM, which is already registered in a
latitude/longitude coordinate system. The image registration is
carried out between the DEM datasets using an affine trans-
formation. Although the TOPSAR DEM is not georeferenced,
it is already on the ground coordinate system. Thus, scaling
and rotation are the two most important components. We have
seen that skewing component was negligible. Any higher order
transformation between the two DEMs would also be negli-
gible. The affine transformation used is as follows:

R P | R

[ZT ] are tie points in the SRTM and TOPSAR
T
DEM coordinate systems respectively. Since [a b €] and [c¢ d f]

are estimated separately, at least three tie points are required to
uniquely determine them. We picked ten tie points from each
DEM based on topographic features and solved for the six un-
knowns in a least squares sense.

Given the six unknowns, we choose new georeferenced
sample locations that are uniformly spaced; every ninth sample

location corresponds to the sample location of SRTM DEM.
T
[

where [:175 ] and
Ys

Those sample locations form [xs], and ["7] is calculated.

Then, the nearest TOPSAR DEM value is selected and is put
into the corresponding new georeferenced sample location.
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Fig. 4. Effect of a PE filter. (a) Original DEM. (b) A 2-D PE filter found from the DEM. (c) DEM filtered with the PE filter. (d)—(f) Spectra of (a)—(c), respectively,
plotted in decibels. (a) and (c) are drawn with the same color scale. Note that in (c) the variation of image (a) was effectively suppressed by the filter. The standard

deviations of (a) and (c) are 27.6 and 2.5 m, respectively.

The intermediate values are filled in from the TOPSAR map to
produce the georeferenced 10-m dataset.

It should be noted that it is not easy to determine the tie
points in DEM datasets. Enhancing the contrast of the DEMs
facilitated the process. In general, fine registration is impor-
tant for correctly merging different datasets. The two DEMs in
this study have different pixel spacings. It is difficult to pick tie
points with higher precision than the pixel spacing of the coarser
image. In our method, however, the SRTM DEM, the coarser
image, is treated as an averaged image of the TOPSAR DEM,
the finer image. In our inversion, only the 9 X 9 averaged values
of the TOPSAR DEM are compared with the pixel values of the
SRTM DEM. Thus, the fine registration is less critical in this
approach than in the case where one-to-one match is required.

III. ARTIFACT ELIMINATION

Examination of the georeferenced TOPSAR DEM [Fig. 2(a)]
shows motion artifacts when compared to the SRTM DEM
[Fig. 2(b)]. The artifacts are not clearly discernible in Fig. 2(a)
because their magnitude is small in comparison to the overall
data values. The artifacts are identified by downsampling the
registered TOPSAR DEM and subtracting the SRTM DEM.
Large-scale anomalies that periodically fluctuate over an entire
swath are visible in Fig. 2(c). The periodic pattern is most likely

due to uncompensated roll of the DC-8 aircraft. The space-
borne data are less likely to exhibit similar artifacts, because
the spacecraft is not greatly affected by the atmosphere. Note
that the width of the anomalies corresponds to the width of a
TOPSAR swath. Because the SRTM swath is much larger than
that of the TOPSAR system (Table I), a larger area is covered
under consistent conditions, reducing the number of parallel
tracks required to form an SRTM DEM.

The maximum amplitude of the motion artifacts in our study
area is about 20 m. This would result in substantial errors in
many analyses if not properly corrected. For example, if this
TOPSAR DEM is used for topography reduction in repeat-pass
InSAR using ERS-2 data with a perpendicular baseline of about
400 m, the resulting deformation interferogram would contain
one fringe (= 2.8 cm) of spurious signal.

To remove these artifacts from the TOPSAR DEM, we up-
sample the difference image with bilinear interpolation by a
factor of nine so that its pixel spacing matches the TOPSAR
DEM. The difference image is subtracted from the TOPSAR
DEM. This process is described with a flow-diagram in Fig. 3.
Note that the lower branch undergoes two low-pass filter op-
erations when averaging and bilinear interpolation are imple-
mented, while the upper branch preserves the high-frequency
contents of the TOPSAR DEM. In this way we can eliminate
the large-scale artifacts while retaining details in the TOPSAR
DEM.
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IV. PREDICTION ERROR FILTER

The next step in the DEM process is to fill in missing data.
We use a prediction error (PE) filter operating on the TOPSAR
DEM to fill these gaps. The basic idea of the PE filter constraint
[7], [8] is that missing data can be estimated so that the restored
data yield minimum energy when the PE filter is applied. The
PE filter is derived from training data, which is normally valid
data surrounding the missing region. The PE filter is selected so
that the missing data and the valid data share the same spectral
content.

Hence, we assume that the spectral content of the missing data
in the TOPSAR DEM is similar to that of the regions with valid
data surrounding the missing regions. We generate a PE filter
such that it rejects data with statistics found in the valid regions
of the TOPSAR DEM. Given this PE filter, we solve for data in
the missing regions such that the interpolated data is also been
nullified by the PE filter. This concept is illustrated in Fig. 5.

The PE filter fpg is found by minimizing the following ob-
jective function:

IfpE * X|* (2)
where x. is the existing data from the TOPSAR DEM, and *
represents convolution. This expression can be rewritten in a
linear algebraic form using the following matrix operation:
[Frex|®

3
or equivalently

X frel” 4)
where Fpg and X, are the matrix representations of fpg and x,.
for the convolution operation. These matrix and vector expres-
sions are used to indicate their linear relationship.

The procedure of acquiring the PE filter can be explained
with one-dimensional example. Suppose that a dataset x =
[1,...,2,] (Where n > 3) is given, and we want to compute
a PE filter of length 3, fpg = [1 f1 f2]. Then we form a system
of linear equations as follows:

I3 T2 T

Ty I3 T2 1
fil| =o0. S
f2

Tn Tp—1 Tn-2

The first element of the PE filter should be equal to one to avoid
the trivial solution, fpg, = 0. Note that (5) is the convolution of
the data and the PE filter. After simple algebra and with

T3 €2 Ty
D=

Tn, Tn—1

=N
Il

Tn—2

we get

(6)
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Fig. 5. Concept of PE filter. The PE filter is estimated by solving an inverse
problem constrained with the remaining part, and the missing part is estimated
by solving another inverse problem constrained with the filter. The ; and ¢»
are white noise with small amplitude.

and its normal equation becomes
4] = o) pr-a) 0
f2
Note that (7) minimizes (2) in a least squares sense. This proce-
dure can be extended to two-dimensional (2-D) problems, and
more details are described in [7] and [8].

Fig. 4 shows the characteristics of the PE filter in the spatial
and Fourier domains. Fig. 4(a) is the sample DEM chosen from
Fig. 1 (numbered box 1) for demonstration. It contains various
topographic features, and has a wide range of spectral content
[Fig. 4(d)]. Fig. 4(b) is the 5 x 5 PE filter derived from 4(a)
by solving the inverse problem in (3). Note that the first three
elements in the first column of the filter coefficients are 0 0 1.
This is the PE filter’s unique constraint that ensures the filtered
output to be white noise [7]. In the filtered output [Fig. 4(c)]
all the variations in the DEM were effectively suppressed. The
size (order) of the PE filter is based on the complexity of the
spectrum of the DEM. In general, as the spectrum becomes more
complex, a larger size filter is required. After testing various
sizes of the filter, we found a 5 x 5 size appropriate for the
DEM used in our study. Fig. 4(d) and (e) shows the spectra of the
DEM and the PE filter respectively. These illustrate the inverse
relationship of the PE filter to the corresponding DEM in the
Fourier domain, such that their product is minimized [Fig. 4(f)].
This PE filter constrains the interpolated data in the DEM to
similar spectral content to the existing data.

All inverse problems in this study were derived using the con-
jugate gradient method, where forward and adjoint functional
operators are used instead of the explicit inverse operators [7],
saving computer memory space.

V. INTERPOLATION

Once the PE filter is determined, we next estimate the missing
parts of the image. As depicted in Fig. 5, interpolation using the
PE filter requires that the norm of the filtered output be mini-
mized. This procedure can be formulated as an inverse compu-
tation minimizing the following objective function:

2
[Fpex|| ®
where Fpg is the matrix representation of the PE filter convo-
lution, and x represents the entire dataset including the known
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Fig. 6. Example subimages of (a) TOPSAR DEM showing regions of missing data (black) and (b) SRTM DEM of the same area. These subimages are engaged

in one implementation of the interpolation. The grayscale is altitude in meters.

and the missing regions. In the inversion process we only up-
date the missing region, without changing the known region.
This guarantees seamless interpolation across the boundaries
between the known and missing regions. As previously stated,
90-m posting SRTM DEMs were generated from 30-m posting
data. This downsampling was done by calculating three “looks”
in both the easting and northing directions. In order to use the
SRTM DEM as a constraint to interpolate the TOPSAR DEM,
we posit the following relationship between the two DEMs: each
pixel value in a 90-m posting SRTM DEM can be considered
equivalent to the averaged value of a 9 x 9 pixel window in
a 10-m posting TOPSAR DEM centered at the corresponding
pixel in the SRTM DEM.

Solution using the constraint of the SRTM DEM to find the
missing data points in the TOPSAR DEM can be expressed as
minimizing the following objective function:

Iy — Ax|® ©

where y is an SRTM DEM expressed as a vector that covers the
missing regions of the TOPSAR DEM, and A is an averaging
operator generating nine looks, and x,,, represents the missing
regions of the TOPSAR DEM.

By combining two constraints, one derived from the statistics
of the PE filter and one from the SRTM DEM, we can inter-
polate the missing data optimally with respect to both criteria.
The PE filter guarantees that the interpolated data will have the
same spectral properties as the known data. At the same time the
SRTM constraint forces the interpolated data to have average
height near the corresponding SRTM DEM. We formulate the

Cvss
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Fig. 7. Cross-validation sum of squares. The minimum occurs when A =
0.16.

inverse problem as a minimization of the following objective
function:

N Fpexm|® + [ly — Axpm | (10)

where ) set the relative effect of each criterion. Here x,,, has the
dimensions of the TOPSAR DEM, while y has the dimensions
of the SRTM DEM. If regions of missing data are localized in an
image, entire image does not have to be used for generating a PE
filter. We implement interpolation in subimages to save time and
computer memory space. An example of the such subimage is
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Fig. 8. Results of interpolation applied to DEMs in Fig. 6, with various weights. (a) A — oc. (b) A = 0.16. (¢c) A = 0. Profiles along A — A’ are shown in (d).

shown in Fig. 6. The image is a part of Fig. 1 (numbered box 2).
Fig. 6(a) and (b) shows examples of x. in (3) and y, respectively.

The multiplier A determines the relative weight of the two
terms in the objective function. As A — oo, the solution satisfies
the first constraint only, and if A = 0, the solution satisfies the
second constraint only.

We used cross-validation sum of squares (CVSS) [9] to de-
termine the optimal weights for the two terms in (10). Consider
a model x,,, that minimizes the following quantity:

A||Fpexn |2+ ly® —A®x, 2 (k=1,...,N) (11)
where y (*) and A (%) are the y and the A in (10) with the kth ele-
ment and the kth row omitted respectively, and NV is the number
of elements in y that fall into the missing region. Denote this
model x') (M\). Then we compute the CVSS defined as follows:

N
CVSS()) = % > (- Ak><$,’f>(/\))2 (12)
k=1

where y;, is the omitted element from the vector y and Ay, is the
omitted row vector from the matrix A when the ng)()\) was
estimated. Thus, Akng ) (\) is the prediction based on the other
N —1 observations. Finally, we minimize CVSS(\) with respect
to A to obtain the optimal weight (Fig. 7).

In the case of the example shown in Fig. 6, the minimum
CVSS was obtained for A = 0.16 (Fig. 7). The effect of varying
A is shown in Fig. 8. It is apparent (see Fig. 8) that the optimal
weight is a more “plausible” result than either of the end mem-
bers, preserving aspects of both constraints.

In Fig. 8(a) the interpolation uses only the PE filter constraint.
This interpolation does not recover the continuity of the ridge
running across the DEM in north—south direction, which is ob-
served in the SRTM DEM [Fig. 6(b)]. This follows from a PE
filter obtained such that it eliminates the overall variations in the
image. The variations include not only the ridge but also the ac-
curate topography in the DEM.

The other end member, Fig. 8(c), shows the result for applying
zero weight to the PE filter constraint. Since the averaging
operator A in (10) is applied independently for each 9 x 9 pixel
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Fig. 9. Quality of the CVSS. (a) aA sample image that does not have a hole. (b) A hole was made. (c) Interpolated image with an optimal weight. (d) CVSS as
a function of A. The CVSS has a minimum when A = 0.062. (¢) RMS error between true image (a) and the interpolated image (c). The minimum occurs when

A = 0.0652.

group, it is equivalent to simply filling the regions of missing
data with 9 x 9 identical values that are the same as the
corresponding SRTM DEM [Fig. 8(a) and (c)].

The quality of cross-validation in this study is itself validated
by simulating the interpolation process with known subimages
that do not contain missing data. For example, if a known
subimage is selected from Fig. 1 (numbered box 3), we can
remove some data and apply our recovery algorithm. The
subimage is similar in topographic features to the area shown
in Fig. 6. The process is illustrated in Fig. 9. We introduce a
hole in Fig. 9(b) and calculate the CVSS [Fig. 9(d)] for each
A ranging from O to 2. Then we use the estimated A, which
minimizes the CVSS, for the interpolation process to obtain
the image in 9(c). For each value of A we also calculate the
RMS error between the known and the interpolated images.
The RMS error is plotted against A in Fig. 9(e). The CVSS is
minimized for A = 0.062, while the RMS error has a minimum
at A = 0.065. This agreement suggests that minimizing the
CVSS is a useful method to balance the constraints. Note that
the minimum RMS error in Fig. 9(e) is about 5 m. This value is
smaller than the relative vertical height accuracy of the SRTM
DEM, which is about 10 m.

VI. RESULT AND DISCUSSION

The method presented in the previous section was applied to
the entire image of Fig. 1. The registered TOPSAR DEM con-

tains missing data in regions of various sizes. Small subimages
were extracted from the DEM. Each subimage is interpolated,
and the results are reinserted into the large DEM. The locations
and sizes of the subimages are indicated with white boxes in
Fig. 10(a). Note the largest region of missing data in the middle
of the caldera. This region is not only a simple large gap but
also a gap between two swaths. The interpolation is an itera-
tive process and fills up regions of missing data starting from
the boundary. If valid data along the boundary (boundaries of a
swath for example) contain edge effects, error tends to propa-
gate through the interpolation process. In this case, expanding
the region of missing data by a few pixels before interpolation
produces better results. If there is a large region of missing data,
the spectral content information of valid data can fade out as
the interpolation proceeds toward the center of the gap. In this
case, sequentially applying the interpolation to parts of the gap
is one solution. Due to edge effects along the boundary of the
large gap, the interpolation result does not produce topography
that matches the surrounding terrain well. Hence, we expand
the gap by three pixels to eliminate edge effects. We divided the
gap into multiple subimages, and each subimage was interpo-
lated individually.

Finally, we can investigate the effect of the artifact elimina-
tion and the interpolation on simulated interferograms. It is often
easier to see differences in elevation in simulated interferograms
than in conventional contour plots. In addition, simulated in-
terferograms provide a measure of how sensitive the interfero-
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Fig. 10. (a) Original TOPSAR DEM and (b) the reconstructed DEM after
interpolation with PE filter and SRTM DEM constraints. The grayscale is
altitude in meters, and the spatial extent is about 12 km across the image.

gram is to the topography. Fig. 11 shows georeferenced simu-
lated interferograms from three DEMs; the registered TOPSAR
DEM, the TOPSAR DEM after the artifact elimination, and the
TOPSAR DEM after the interpolation. In all interferograms, a
C-band wavelength is used, and we assume a 452-m perpendic-
ular baseline between two satellite positions. This perpendicular
baseline is realistic [2]. The fringe lines in the interferograms are
approximately height contour lines. The interval of the fringe
lines is inversely proportional to the perpendicular baseline [10],
and in this case one color cycle of the fringes represents about
20 m. Note in Fig. 11(a) that the fringe lines are discontinuous
across the long region of missing data inside the caldera. This is
due to artifacts in the original TOPSAR DEM. After eliminating
these artifacts the discontinuity disappears [Fig. 11(b)]. Finally
the missing data regions are interpolated in a seamless manner

[Fig. 11(c)].

VII. CONCLUSION

The aircraft roll artifacts in the TOPSAR DEM were elim-
inated by subtracting the difference between the TOPSAR and
SRTM DEMs. A 2-D PE filter derived from the existing data and
the SRTM DEM for the same region are then used as interpola-
tion constraints. Solving the inverse problem constrained with
both the PE filter and the SRTM DEM produces a high-quality
interpolated map of elevation. Cross-validation works well to
select optimal constraint weighting in the inversion. This ob-
jective criterion results in less biased interpolation and guaran-
tees the best fit to the SRTM DEM. The quality of many other
TOPSAR DEMs can be improved similarly.

1689

Fig. 11. Simulated interferograms from (a) the original registered TOPSAR
DEM, (b) the DEM after the artifact was removed, and (c) the DEM interpolated
with PE filter and the SRTM DEM. All the interferograms were simulated with
the C-band wavelength (5.6 cm) and a perpendicular baseline of 452 m. Thus,
one color cycle represents 20-m height difference.
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