Skip to main content Skip to secondary navigation

Mechanics of Induced Seismicity

Main content start

We are investigating the physics of injection-induced seismicity including full poroelastic coupling of stress and pore pressure, and time-dependent earthquake nucleation. In one study we model stress and pore pressure due to specified injection rate in a homogeneous, poroelastic medium.  During injection poroelastic coupling may increase or decrease the seismicity rate, depending on the orientation of the faults relative to the injector. If injection-induced stresses inhibit slip, abrupt shut-in can lead to locally sharp increases in seismicity rate; tapering the flux mitigates this effect. This is shown in the first figure along the x-axis, and also in the time snapshots in Figure 2.

The maximum magnitude event has been observed to occur postinjection. We suggest the seismicity rate at a given magnitude depends on the nucleation rate, the size distribution of fault segments, and if the background shear stress is low, the time-varying volume of perturbed crust. This leads to a rollover in frequency-magnitude distribution for larger events, with a “corner” that increases with time. Larger events are absent at short times, but approach the background frequency with time; larger events occurring post shut-in are thus not unexpected as seen in the simulation of Figure 3.

Current work is now exploring more realistic geometries, with injection into a sandstone layer overlying basement containing normal faults.  The faults may be either low or high permeability and connected or isolated from the reservoir (Figure 4).


  • Chang, K. W., and P. Segall (2016), Seismicity on Basement Faults Induced by Simultaneous Fluid Injection–Extraction, Pure Appl. Geophys., doi: 10.1007/s00024-016-1319-7 
  • Chang, K. W., and P. Segall (2016), Injection induced seismicity on basement faults including poroelastic stressing, J. Geophys. Res. Solid Earth, 121, doi:10.1002/2015JB012561.
  • Segall, P., and S. Lu (2015), Injection-induced seismicity: Poroelastic and earthquake nucleation effects, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB012060.